

Ladies Mile HIF

Integrated Transport Assessment

Contact Details

Name: Brandon Ducharme, PMP, MBA, CMEngNZ, CPEng, P.Eng

WSP Opus Queenstown Office Level 1, Five Mile Centre, Grant Road, Frankton PO Box 2323, Wakatipu, Queenstown 9349 New Zealand

Telephone: +64 3 440 2400 Mobile: +64 27 601 2383

Document Details:

Date: 29 June 2018

Reference: 6-XQ074.01 Rev A Status: Issued for Client Comment

Prepared by:

Chris Baker | Transport Engineer

Reviewed by:

Richard Hilliard | Senior Engineer

Transportation

Approved for Release by:

Reece Gibson | Work Group Manager

Transportation

Executive Summary

This report has been prepared with the intention of supporting QLDC's business case for HIF funding towards lead transport infrastructure to enable housing development at the Ladies Mile site. The traffic impact of proposed development programmes has been assessed against the capacity of the SH6 corridor. Traffic modelling of existing and forecast conditions has informed a required package of integrated transport solutions, designed to encourage a sufficient uptake of alternative transport modes and supress traffic demand to below the corridor's capacity. The findings of the assessment can be summarised as follows.

Traffic growth on SH6 is placing a significant strain on the already-busy corridor, with 2-year growth rates at 9.0%. With considerable development continuing in Frankton and the wider Queenstown area, growth rates are not expected to decrease significantly, other than in the event of economic downturn.

The Ladies Mile site has significant accessibility challenges due to its' location, surrounding topography and limited connections to active modes and public transport. Car dependent development has prevailed in the past, as exemplified by Shotover County and Lake Hayes Estate; this is not sustainable into the future as there is very limited opportunity to increase highway capacity in an affordable way.

Primary access is proposed to be directly onto SH6, which is the only regional highway to the east and north. The route is a lifeline for the Queenstown economy. As such, key stakeholders (such as NZ Transport Agency) require a level of operational efficiency and a safe environment to be maintained for all customers using the road.

Recent surveys confirm that the pinch point in the network is in the vicinity of Shotover Bridge where the maximum traffic flow that can be accommodated in one hour is approximately 1,600 vehicles. The Transport Agency is not supportive of any scenarios that (in combination with background growth) result in peak traffic flows of more than 1,600 vehicles at this location.

For each programme, a package of transport improvement measures have been identified with the intention of enabling the development to take place without breaching the capacity of the Shotover Bridge. These include concept designs for the immediate access points onto SH6, a range of Public Transport, walking and cycling and TDM improvements to encourage mode shift away from single occupancy car trips. Options for a Park and Ride site to capture westbound regional trips with associated bus priority measures on SH6, and the potential for re-routing some SH6 traffic via Arthurs Point have also been investigated.

It is important to capitalise on the change opportunity when new residents first move into an area and establish their travel behaviour. Alternative travel choices should be available from the outset of the development.

Junction analysis confirms that either roundabout or traffic signals would have capacity to cater for traffic demands at immediate access points for all proposed programmes. Therefore, it can be concluded that the highway capacity is the constraint, rather than the intersections. Traffic signals allow for more efficient pedestrian crossings, provide more control over traffic flow and allow priority to be maintained for SH6 traffic, while enabling bus priority measures at intersections to compliment the bus lanes. However, given the 80km/h speed environment, roundabouts provide higher capacity and offer a safer solution. For these reasons, NZ Transport Agency have indicated that they would not support traffic signals at the site.

Based on a set of key assumptions, which have been sensitivity tested, traffic modelling indicates the following:

www.wsp-opus.co.nz ©WSP OPUS | JUNE 2018 PAGE II

- Programme 1 is forecast to generate 285 vehicles above capacity at completion. To keep peak hour flows at the bridge below 1,600 vehicles a mode shift of 15% and 25% is required at Ladies Mile and Lake Hayes/Shotover Country respectively.
- Programme 2 is forecast to generate 508 vehicles above capacity at completion. To keep peak hour flows at the bridge below 1,600 vehicles a mode shift of 15% and 25% is required at Ladies Mile and Lake Hayes/Shotover Country respectively, in addition to a Park and Ride on SH6 with a turn in rate of 20%.
- Programme 3 is forecast to generate 770 vehicles above capacity at completion. To keep peak hour flows at the bridge below 1,600 vehicles a mode shift of 40% and 40% is required at Ladies Mile and Lake Hayes/Shotover Country respectively, in addition to a Park and Ride on SH6 with a turn in rate of 20%. This would require a step change in transport infrastructure, including mass transit, an increase in highway capacity or a combination of the two.
- Programme 4 is forecast to generate 1,570 vehicles above capacity at completion. To keep peak hour flows at the bridge below 1,600 vehicles a mode shift of 50% and 50% is required at Ladies Mile and Lake Hayes/Shotover Country respectively, in addition to a Park and Ride on SH6 with a turn in rate of 40%. This would require a step change in transport infrastructure, including mass transit, an increase in highway capacity or a combination of the two.

Economic analysis of the transport infrastructure indicates that a BCR of 2.17 can be achieved for Programme 1 and BCR of 2.75 can be achieved for Programme 2.

Population density is considered to be too low to make MRT commercially viable at Ladies Mile. A single terminal would not provide for a sufficient catchment, while multiple terminals would further increase cost. Rough order costing, provided by Doppelmayr, for an MRT solution (gondola from Ladies Mile to Frankton) put the costs in the region of \$80m to \$95m. Programmes 1 and 2 produce less than \$15m in transport benefits, indicating that the additional cost of an MRT solution would far outweigh the benefits provided.

www.wsp-opus.co.nz ©WSP OPUS | JUNE 2018 PAGE III

Contents

1	Intro	oduction	6
	1.1	Ladies Mile Development Proposals	6
	1.2	Assessment Approach	7
	1.3	Working Collaboratively with Key Stakeholders	8
2	Ladi	ies Mile in Context	8
	2.1	Policy and Strategy documents	
	2.2	Other Local Projects	
3	Base	eline Conditions	11
J	3.1	Site Analysis	
	3.2	Highway Access	
	3.3	Walking and Cycling	
	3.4	Public Transport	
	3.5	Ladies Mile	
	3.6	Mode Share	19
	3.7	Road Safety	20
	3.8	Existing Traffic Conditions	21
	3.9	Traffic Growth	23
4	Tran	24	
	4.1	Transport Modelling Overview	
	4.2	Future Baseline Conditions	27
	4.3	Future Reference Case	28
	4.4	Trip Generation	29
	4.5	Modelling Results	29
5	Tran	nsport Economic Analysis	35
	5.1	Methodology	36
	5.2	Results and Conclusions	36
6	HIF	Site Strategy for Access and Movement	37
	6.1	Public Transport Improvements	
	6.2	Park and Ride	38
	6.3	Walking and Cycling	38
	6.4	Travel Demand Management	38
	6.5	Off-site Highway Improvements	39
7	Pha	sing and Deliverysing and Delivery	39
	7.1	Phasing Strategy	39

	7.2 Infrastructure Triggers	39
8	Summary and Conclusions	
9	Acknowledgements	43
10	Appendix A - Long List Options v1.0	44
11	Appendix B - Modelling and Scenario Analysis	45
12	Appendix C - Economic Evaluation	46
13	Appendix D - Designs	47
14	Appendix F - Intersection Estimates ROC	48

1 Introduction

This report presents an assessment of traffic issues and integrated transport planning opportunities associated with the planned Ladies Mile housing development site(s) situated alongside the Ladies Mile section of State Highway 6 in Queenstown.

The intention of the assessment is to support the Queenstown Lakes District Council (QLDC) business case for HIF funding towards the lead transport infrastructure necessary to enable the housing development.

The assessment considers the transport impacts of proposed development programmes and presents a transport strategy that mitigates the potential for traffic volumes to exceed peak hour capacity on SH6.

1.1 Ladies Mile Development Proposals

The Ladies Mile area was identified as a potential site that could increase the housing supply in the Queenstown area and therefore attract HIF funding. Queenstown Lakes District Council submitted an Indicative Business Case (IBC) proposal to the Ministry of Business Innovation and Employment (MBIE) in March 2017 requesting funding for further development of this proposal. Funding was granted in July 2017 upon which commenced the detailed business case (DBC) stage. A key component of the DBC is to develop the programme options to identify the preferred programme of works which includes the development size (number of lots) and lead infrastructure requirements. From the IBC, the preferred option brought forward was for a development of 1,100 lots.

The development of the programme options has been through an iterative multi criteria analysis (MCA) process. At the current time, there are four programme options ranging from the smallest, least ambitious option of 450 lots through to a maximised development potential or most ambitious option of 2,185 lots.

The latest MCA has been informed by the previous work undertaken by WSP Opus. A high-level transport model of the Ladies Mile area was undertaken by WSP Opus in February 2018 which identified that preferred option of 1,100 lots was unsustainable and would ultimately lead to significant congestion on SH6 in the AM peak on the westbound link (Shotover Bridge) unless a high degree of modal shift was achieved. Further iterations of the model determined that a development of 750 lots was the maximum size of development under a reasonably expected mode shift scenario, this was presented at a workshop held on 15 June 2018 upon which the latest MCA was developed.

The diagram below summarizes the development proposals (programme options):

Programme	Description
1 - Do Minimum (450 lots)	Area to the North of SH6 between Howards Drive and Stalker Road. Access via new intersection at the Howards Drive junction
To a service of the s	

www.wsp-opus.co.nz ©WSP OPUS | JUNE 2018 PAGE 6

Programme

Description

2 - Intermediate (750 lots)

Area to the North of SH6 between Howards Drive and Stalker Road plus area to east of Howards Drive and West of Stalker Road. Access via new intersection at Howards Drive plus existing Stalker Road roundabout.

3 - Preferred (1100 lots)

More intense development of Area to the North of SH6 between Howards Drive and Stalker Road plus area to east of Howards Drive and West of Stalker Road. Access via new intersection at Howards Drive plus existing Stalker Road roundabout.

4 - Full Master Plan Area (2,185 lots)

Full development of Ladies Mile Master Plan area with access via new intersections at Howards Drive, McDowell Road and Lower Shotover Road. Plus use existing intersection at Stalker Road and Howards Drive.

1.2 Assessment Approach

The assessment approach has been iterative in that the work undertaken for the assessment is informed by, but also informs the programme options. Through this iterative process it has been possible to develop transport solutions that would enable development on Ladies Mile in a sustainable manner whereby lead infrastructure can be implemented ahead of potential traffic congestion issues arising. Therefore, understanding the site and its limitations as well as the development potential has been key to providing a robust analysis.

This assessment has included:

- Further development of the existing transport models
- Identifying potential development rates
- Understanding background traffic growth and its drivers
- Understanding current site conditions, constraints and transport options
- Using industry knowledge and expertise to identify potential modal shift opportunities and uptake.
- Consideration of various transportation options and their suitability to Ladies Mile
- Consideration of planning and policy constraints
- Collaboratively working with key stakeholders

1.3 Working Collaboratively with Key Stakeholders

To ensure that the project achieves its objectives, four key stakeholders were engaged in the process, as summarised in Table 1. Each stakeholder had a different area of interest but each were critical to ensure the ongoing viability of the project.

Table 1 Key Stakeholders

Stakeholder	Role	Interest
QLDC	Client and HIF funding applicant, Planning and policy regulator	Maximise the potential development to increase housing supply in the district and ease housing affordability.
NZ Transport Agency	Affected party	The HIF development will be accessed directly from SH6. The Transport Agency has an obligation to protect the State Highway and want to understand the mitigation measures put in place to allay any potential adverse effects. Engagement in this process will allow them to ensure that their planning is aligned with impacts the development will have on SH6
MBIE	Funding partner	MBIE will ultimately approve funding and need assurance that the funds will be appropriately spent and deliver on the objectives of the HIF.
ORC	Affected Party	ORC are the public transport providers for the Queenstown area. Therefore, they need to be consulted on all public transport matters to ensure they are viable and achievable within the time frames.

In addition to the above, the developers and landowners directly affected by the HIF development could also provide valuable input to the project. However, QLDC has previously consulted with the community on the development of Ladies Mile and at this time only one developer has a planned development on the site (Glenpanel). The Glenpanel development in its current form will be considered through the transport planning process.

2 Ladies Mile in Context

This section sets out the context within which the project is being undertaken. It includes policy and strategy at national, regional and local levels, as well as future projects that have been committed, planned or proposed in the vicinity of the Ladies Mile site.

2.1 Policy and Strategy documents

2.1.1 Government Policy Statement 2018

The Government Policy Statement (GPS) 2018 is focused on four key priorities; safety, access, environment, and value for money. The four categories have been developed to reduce DSIs, deliver the best infrastructure for the right cost, provide increased access for people and reduce adverse effects on the climate.

To reduce deaths and serious injuries, governing bodies will need to have a greater focus on safety improvements on high risk state highways, such SH6 in Queenstown, as well as local roads.

The second priority of the GPS is access, with increased investment in footpaths and cycleways to encourage uptake of active travel modes. The strategic vision looks at an increased focus in urban centres and development in thriving regions, such as Queenstown. There is a direction to support national freight and tourism connections, as well as integrating transport and land use planning, which increases access to employment, education and recreation.

The policy statement also seeks to protect the environment in relation to land transport, with mode shift to help aid in lowering emissions to facilitate the wider commitments of the Government such as achieving the Paris Agreement target. It notes the importance of creating liveable cities through enhanced public spaces and improved accessibility.

The final priority is around investing in value for money projects which consider the full range of costs and benefits over the whole life of the investment

2.1.2 Safer Journeys

Safer Journeys is New Zealand's road safety strategy for 2010 to 2020 and has been developed to reduce deaths and serious injuries. Priorities have been established to make New Zealand's roads safer, through short and term measures for all transport modes. Safer Journeys supports safer walking and cycling through the provision of appropriate infrastructure. Short term this involves delivering safer roads with space for active modes, better enforcement and more urban speed management. Longer term, land use planning should support public transport and active modes and plans should actively incorporate road safety into designs.

2.1.3 Regional Policy Statement for Otago (1998)

Otago's Regional Policy Statement for transport promotes and encourages the sustainable management of Otago's transport network through:

- Promoting the use of fuel efficient modes of transport
- Encouraging a reduction in the use of fuels which produce emissions harmful to the environment
- Promoting a safer transport system
- Promoting the protection of transport infrastructure from the adverse effects of land use activities and natural hazards.

As of late 2017, the Policy Statement is under review. However, Otago Regional Council will continue to provide social, cultural and environmental wellbeing, community and safety for future generations.

2.1.4 Otago Southland Regional Land Transport Plan 2015-2021

The Otago Southland RLTP was produced jointly between Otago and Southland Regional Transport Committees to help acknowledge shared challenges and opportunities within the regions. The plan focuses on delivering a transport system that is safe, delivers an appropriate level of service, supports economic activity and productivity and provides transport choices.

For urban areas, including Queenstown, the RLTP seeks to reduce reliance on the private motor vehicle, especially for shorter trips. It supports integrated transport planning and providing transport for future requirements in addition to present. The plan encourages future development and subdivisions, such as Ladies Mile, to be effectively served by public transport and active modes, reducing the demand on the road network. Public transport should run on a regular basis and connect nodes to a centre with essential services. It should

also be accessible with adequate bus stops, shelters and footpaths for people to access the services. Provision for active modes must be incorporated into new designs and major improvements. This can be by reallocating road space, delivering separated paths and priority for pedestrians and people on bikes.

2.1.5 Queenstown District Lakes Operative District Plan 2013

The Operative District Plan recognises the need for a sustainable, safe transport system that provides maximum choice between modes. The unique nature of transport demands and constraints in Queenstown mean that land use and access need to be controlled efficiently. Objectives 6 and 7 within the District Plan refer to recognising and meeting the needs of people who travel by active modes and public transport.

2.2 Other Local Projects

Transport issues facing the Ladies Mile corridor are not isolated to that area of the network. A host of studies across Queenstown have been identified to understand transport issues in Frankton and the town centre. Table 2 summarises the studies undertaken to date most relevant to the Ladies Mile site. The studies show an acknowledgement of a need to reduce reliance on private vehicles and set out strategies for reducing demand from background traffic growth and local residential developments.

Table 2 Queenstown Transport Studies Undertaken and Planned

Queenstown Integrated Transport PBC	Queenstown Town Centre DBC	Frankton to Queenstown SSBC	Grant Road to Kawarau Falls DBC	Public Transport Demand Capacity Analysis	Wakatipu Active Travel Network DBC
Addresses issues through making public transport and active modes attractive alternatives and managing parking to reduce use of private vehicles	Proposes a raft of improvement measures for the town centre, including new road links, pedestrianisation, bus priority and hub improvements and improved parking management	Proposes increasing capacity on SH6A with priority for public transport and intersection improvements	Currently underway, seeks to improve capacity of the SH6 link and intersections, increasing prioritisation of public transport (including a PT hub) and integrating with active modes	Required to understand the demand for public transport across Queenstown and capacity of proposed solutions	Sets out strategic active mode links to be integrated with other planned transport improvements and studies

Figure 1 summarises potential, planned and committed physical works in the vicinity of the Ladies Mile site.

Committed projects include:

- Link, intersection, public transport and active mode improvements around Frankton, maintaining the movement function of SH6 while providing access to the commercial area
- Westbound slip lane at Tucker Beach Road to remove the conflict between SH6 through traffic and turning local traffic. This will directly impact the Ladies Mile

www.wsp-opus.co.nz ©WSP OPUS | JUNE 2018 PAGE 10

development by increasing the capacity of the Shotover Bridge, though the overall effect is expected to be minor for traffic on SH6

Planned projects include:

- A new link to the Quail Rise residential area, reducing demand at the Tucker Beach Road intersection
- A privately funded and operated gondola connecting Remarkables Park in Frankton with the Remarkables ski field via Lake Hayes estate. This is expected to be used by students travelling to school, thus reducing traffic volumes
- Upgrading the Howards Drive intersection on SH6 to a roundabout. The Ladies Mile site is planned to access SH6 via the northern approach of this intersection

Potential projects include:

- A Mass Rapid Transit link between Frankton and the town centre (currently anticipated to be a gondola)
- Ferry services on the Kawarau River to Lake Hayes estate and between Frankton and the town centre
- Bus priority at the SH6/6A intersection
- Park and Ride facilities at Jacks Point, Frankton and/or Lake Hayes

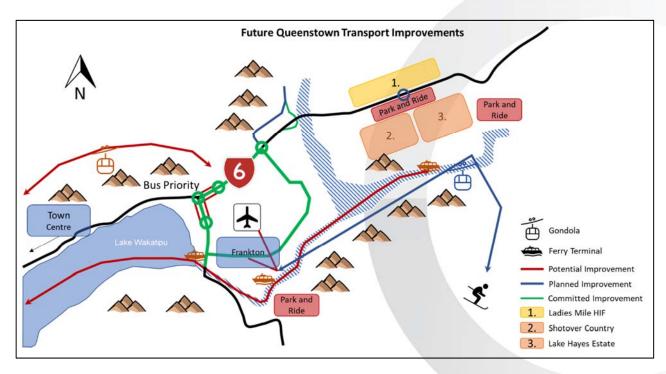


Figure 1 Potential, Planned and Committed Future Queenstown Transport Improvements

3 Baseline Conditions

3.1 Site Analysis

Figure 2 summarises an access and movement analysis of current morning peak hour conditions at the Ladies Mile site. Access to the site is proposed to be via SH6, which is the only regional highway in the area and provides a lifeline for the local economy. In recent years, the function of the highway has evolved from purely providing movement for regional traffic to providing access to the local residential areas. NZ Transport Agency, as a key stakeholder, require that the movement function of the highway is not jeopardised by favouring local access. The corridor is

geographically constrained by the Shotover and Kawarau rivers, and mountainous terrain on all sides, restricting possible solutions for capacity upgrades.

Traditionally, car-dependent development has prevailed in Queenstown, as evidenced by the Lake Hayes and Shotover Country estates. Given the topographical constraints described above, there is limited opportunity to increase highway capacity. Queueing currently occurs at the Stalker Road roundabout, the Shotover Bridge and the SH6/6A roundabout.

State Highway 6 has a severing effect on movement north and south of the highway. Land use is mainly residential to the south of SH6 (other than Shotover Primary School) but mixed-use areas are proposed for Ladies Mile, which are likely to generate demand for crossing. As discussed in later Section 3.9, traffic volumes are growing rapidly on SH6, which is becoming increasingly difficult for pedestrians and cyclists to cross, particularly in peak times.

A cycle trail runs parallel to SH6 from Lake Hayes to Frankton along the northern bank of the Kawarau River, but there are no crossing points on the river. The existing Shotover Bridge on SH6 has no facilities for pedestrians or cyclists, creating an indirect route into Frankton including a 1.5km detour to the north across the old Shotover Bridge. The river is up to 400m wide in places, which is likely to prove cost-prohibitive for a future bridge.

Recent improvements to the public transport system, including a \$2 flat fare and increased frequency, have led to increased patronage. However, the network is set up for operator efficiency, rather than passenger efficiency, and frequency remains low. As such, the level of service for outbound and return journeys can inconsistent; some services require an hour wait at the Frankton interchange.

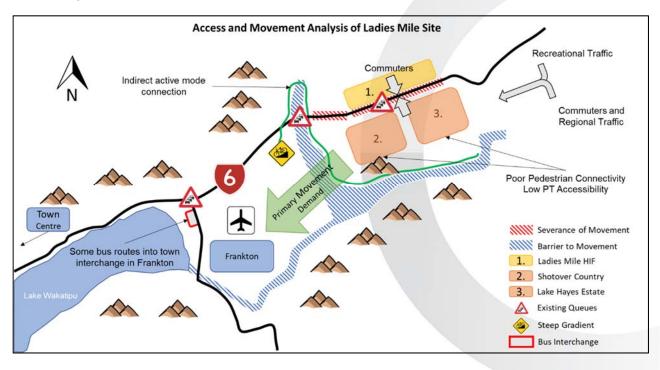


Figure 2 Access and Movement Analysis of Ladies Mile Site

Figure 3 provides travel time isochrones for various modes of transport.

A lack of pedestrian infrastructure along SH6 restricts the walkable distance (30-minute walk) from the site to the Shotover Country and Lake Hayes Estate developments. The lighter green isochrone shows the walkable distance with pedestrians using roads as well as footpaths. Residents are likely to walk only to destinations within the residential developments on Ladies Mile or public transport terminals for destinations further afield. Most destinations are accessible within a 30-minute bike ride of the site (at 20km/h), including Frankton, the base of the ski field access roads and the outskirts of the CBD. The site's proximity to SH6 enables private vehicle access to all of Queenstown within 30 minutes, as far west as Closeburn and far south as Wye Creek.

Residents of Ladies Mile are likely to have similar travel patterns to those in the recently-completed residential developments at Lake Hayes Estate and Shotover Country. Employment in Queenstown has historically been focussed in the central business district, though Frankton is increasingly becoming a significant employment centre. The site lies east of both areas, approximately 11km from the town centre and 5km from Frankton.

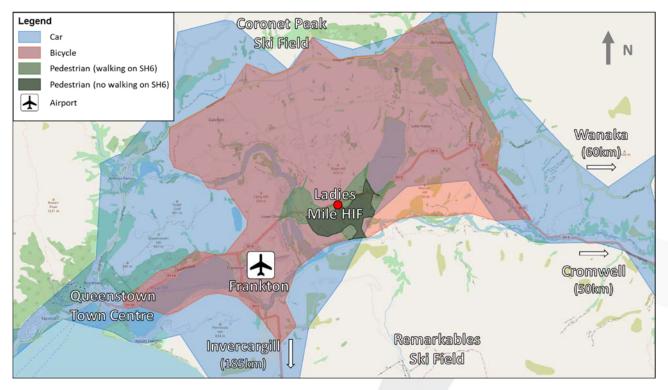


Figure 3 Travel Time Isochrones from Ladies Mile HIF Site (30min travel time). Source: Openstreetmap.org and Iso4app

3.2 Highway Access

The regional context of SH6 is shown on Figure 4, which also illustrates the existing road hierarchy within the Queenstown lakes District as defined by the NZ Transport Agency One Network Road Classification (ONRC).

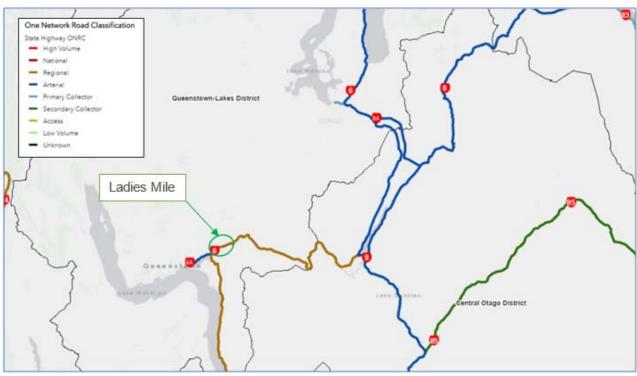


Figure 4: Road Hierarchy Queenstown Lakes District

The existing road hierarchy as defined by NZ Transport Agency Once Network Road Classification (ONRC) the immediate vicinity of Ladies Mile is shown in Figure 5.

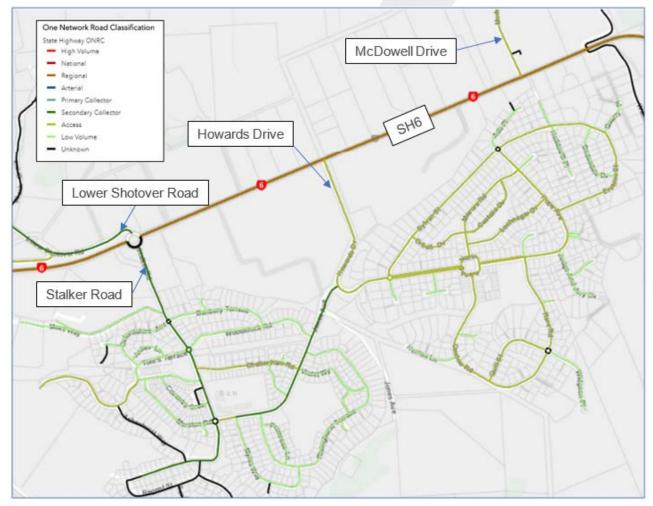


Figure 5: Road Hierarchy Ladies Mile

In the immediate vicinity of the site, SH6 consists of a two-way, two-lane road with a sign posted speed limit of 100km/h. The road width varies from approximately 13.0m to 16.0m in width, sealed with road marking along its length and edge post markers on both sides. There is a shoulder on either side with an approximate width of 2.0m.

The Frankton Ladies Mile Highway (SH6) has one roundabout intersection with four legs, namely SH6, Lower Shotover Road and Stalker Road. The Stalker Road roundabout has been operational since December 2015, when it was installed to help alleviate traffic congestion on the state highway. The roundabout is approximately 35m in diameter, and has a pedestrian island with pram crossings for adjacent footpaths. The roundabout has two lanes for the through movements along SH6 and one lane for the Stalker Road and Lower Shotover Road approaches. There are also two give-way T-intersections with Howards Drive and McDowell Drive. These roads are described below:

3.2.1 Stalker Road

Stalker Road connects to the roundabout with SH6 and is described as a local road in the QLDC District Plan. It is a two-lane, two-way road approximately 6.1m in width and is chip sealed and unmarked along its length except for roadmaking at the intersection with SH6. The signposted speed on the road is 50km/h. Stalker Road provides access to the Lower Shotover area.

3.2.2 Lower Shotover Road

Lower Shotover Road is a collector road as described by the District Plan, it is a two-way two-lane road 6.3m in width. It is sealed and marked with shoulders on either side of the road with edge-marker posts. The sign-posted speed is 80km/h. This road would function as an alternative route to Arrowtown in the case of an incident on SH6.

3.2.3 Howards Drive

Howards Drive is a local road with in accordance with the District Plan, it is a 7.2m chip sealed road with road marking for a two-way road with shoulders either side. The posted speed limit is 50km/h. Howards Drive connects SH6 to Lake Hayes Estate directly south of the State highway.

3.2.4 McDowell Drive

McDowell Drive is a local road in Queenstown Lakes District, it is 6.3m in width and it services residential dwellings north of SH6 in Ladies Mile. The road is sealed and is only marked at the intersection with SH6.

3.3 Walking and Cycling

The Queenstown area has a cycle trail that consists of eight sections. These trails traverse the area between Lake Wakatipu, Arrowtown, and Gibbston Valley. The trails are summarised in Figure 6 below.

www.wsp-opus.co.nz ©WSP OPUS | JUNE 2018 PAGE 15

Figure 6: Queenstown Trail Map

Generally, the walking and cycling provision in and around the Ladies Mile area is limited. The main provision is the Twin Rivers Trail and the commuter trail which connects Twin Rivers and the Lake Hayes Circuit.

The Twin Rivers Trail which starts in Frankton and crosses the Shotover Bridge north of SH6. This is a wooden pedestrian and cyclist bridge that is part of the Queenstown Trail, large enough for two-way movement. The trail follows Shotover River south to an underpass under the SH6 bridge on the Ladies Mile side.

The trail then follows the coast along Shotover River and Kawarau River, around Ladies Mile. It joins with the Commuter Trail which goes through Lake Hayes Estate and goes under SH6 via an underpass and joins along the north side of SH6, then joining on to the Lake Hayes Circuit.

Cyclists along SH6 would use the shoulders to cycle in as there is no other provision, and there is no extra provision for cyclists to cross the SH6 bridge so cyclists would use the Shotover Bridge to cross the river. There is a turnoff from the shoulder before the eastern end of the SH6 bridge provided for cyclists to use the underpass that leads to the Shotover Bridge. There is also a footpath with pram crossings for cyclists and pedestrians at the Stalker Road roundabout on all approaches to the intersection.

3.4 Public Transport

Public Transport in Queenstown consists of a bus network connecting Central Queenstown, Arthurs Point, Frankton, Arrowtown and Lake Hayes Estate.

The bus network has been recently improved by providing new consistent services supported by an improved fare and ticketing system. The changes were implemented in November 2017, as a jointly funded project by Otago Regional Council, NZTA and Queenstown Lakes District Council.

The bus network is shown in Figure 7. It comprises four routes which run at either 15 minute, 30 minute or hourly frequencies from 6am to 10pm, 7 days a week. The routes extend from Arrowtown to Sunshine Bay, and from Arthurs Point, north of Queenstown Town Centre, to Jacks Point, south of Frankton. The new services are run with accessible buses with Wi-Fi and bike racks.

www.wsp-opus.co.nz ©WSP OPUS | JUNE 2018 PAGE 16

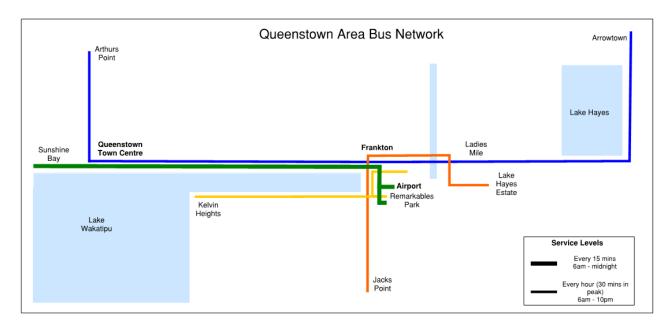


Figure 7 Queenstown Area Bus Network (November 2017)

As part of the project, Queenstown introduced the GoCard, a smart card allowing people to travel on all of Queenstown's bus services for a flat fee of \$2, including transferring within 30 minutes. Without a GoCard, travel is \$5 per trip, with an increased fare to travel to and from the airport. The GoCard is planned to be upgraded during 2018 to allow online top ups.

The simplicity of the routes and timetables, combined with the new fare system has resulted in large patronage increases. The monthly patronage for bus use in Queenstown has more than doubled from 41,000 in February 2017 to 100,000 in February 2018, as shown in Figure 8.

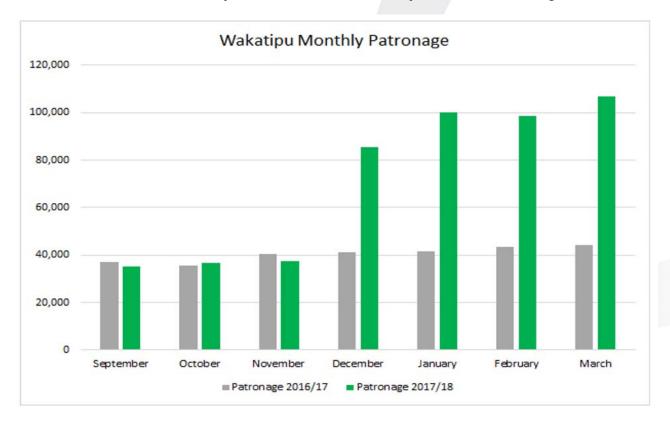


Figure 8 Wakatipu Monthly Patronage - Orbus (https://crux.org.nz/community/time-to-ban-cars-from-our-town-centres/)

The introduction coincided with car park fee rises within Queenstown Central to encourage further bus usage.

Savvy, a ride sharing service also operates in Queenstown and provides an on-demand transport service to a slightly wider area than public transport. Services are booked by an app on the user's phone, which provides a time and price for the journey.

3.5 Ladies Mile

The Ladies Mile development is currently served by two bus routes, as shown in Figure 9. They both operate hourly throughout the day and half hourly during peak to provide additional services towards Frankton and Queenstown during the morning and in reverse in the afternoon peak.

Figure 9 Bus Routes around Ladies Mile

Route 2 originates in Arrowtown, travels along SH6, through the Ladies Mile development, over the Shotover Bridge, through the Frankton Hub, along Frankton Road to Queenstown Town Centre before terminating at Arthurs Point. Route 4 starts within the Lake Hayes Estate, bordering Ladies Mile, travels through Shotover Country, over the Shotover Bridge, through the Frankton Hub and terminates at Jacks Point.

The two routes create two buses an hour in either direction using the western end of the Frankton - Ladies Mile Highway and the Shotover Bridge for most of the day. At peak times, there are an additional two services per hour.

Travel time surveys taken from TomTom data between 2014 and 2016 show there are delays from Stalker Road (east of the Shotover bridge) towards Frankton during the morning peak. For this section, buses use the same lanes as the general traffic, therefore vehicle speeds would be similar. During peak, the speeds are approximately 40km/hr, whereas during other times of the day, they are 67 km/hr.

Current bus stops are located approximately 500m apart through the residential streets. There are few bus stops on the Ladies Mile Highway and SH6 between the Shotover Bridge and Arrowtown. There are existing issues with some journeys requiring transfers, such as Lake Hayes to Queenstown, and service frequency resulting in hour-long layovers.

3.6 Mode Share

Traffic count surveys have been carried out annually on the three major routes into Queenstown town centre, however the results only include vehicle mode share rather than vehicle occupancy. The three routes that were analysed were Gorge Road, Lake Esplanade and Frankton Road, shown in Figure 10.

Figure 10 Queenstown Modal Split Survey - Map of Survey Locations (From Stantec Report)

Over the past 10 years, the mode split has varied minimally, with cars making up about 85% of the travel into Queenstown. Pedestrian and cyclist traffic has remained around 10% and 1% respectively. 2018 had a similar number of buses, but greater number of coaches than previous years, however the report suggests it was due to counting error rather than a large increase. The overall number of cars entering Queenstown town centre has reduced from 5,958 in 2017 to 5,571 in 2018. This, combined with the increase in bus patronage suggest there are more people travelling by bus into the town centre.

On 17th May 2018, WSP Opus carried out a vehicle occupancy survey on the Shotover Bridge, westbound during the AM and eastbound during the PM peak. During the morning peak, there were approximately 1750 people travelling westbound in 1300 vehicles. About 25% of vehicles had two people and a further 6% had three or more. The overall numbers are slightly higher during the afternoon peak travelling eastbound over the bridge, and 35% of vehicles carrying two or more people.

3.7 Road Safety

The crash history of the Ladies Mile region using NZ Transport Agency's Crash Analysis System (CAS) revealed a total of 198 crashes between 2007-2017. This crash analysis was conducted for a 3.0km range from the intersection of SH6 and Howards Drive and the results are shown in Figure 11.

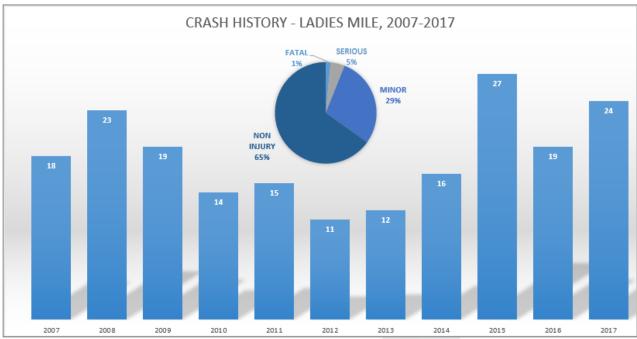


Figure 11: Crashes in Ladies Mile over the last 10 years, CAS 2007-2017

The graph above shows that the majority (94%) of total crashes between 2007 and 2017 were either minor or non-injury crashes. There were three fatal crashes and nine serious injury crashes. On the whole, it appears that the traffic safety of Ladies Mile has worsened in recent years. The first fatal crash occurred in 2009 on Lower Shotover Road and involved a tree falling on a car causing fatality. The second fatal crash also occurred in 2009 in Frankton just west of Shotover River, it involved a head-on collision on SH6. The final fatal crash occurred in 2015 just west of Howards Drive and involved another head-on collision on SH6. The majority of the severe crashes were clustered around SH6 and had six instances where the driver lost control, two instances of head-on collisions, and two instances of turning crashes.

It is evident from the crash history above that along this section of SH6 there is a crash record of vehicles colliding head-on or losing control resulting in fatalities and serious injuries. The crash location by severity of crash sites are shown in *Figure 12* below.

www.wsp-opus.co.nz ©WSP OPUS | JUNE 2018 PAGE 20

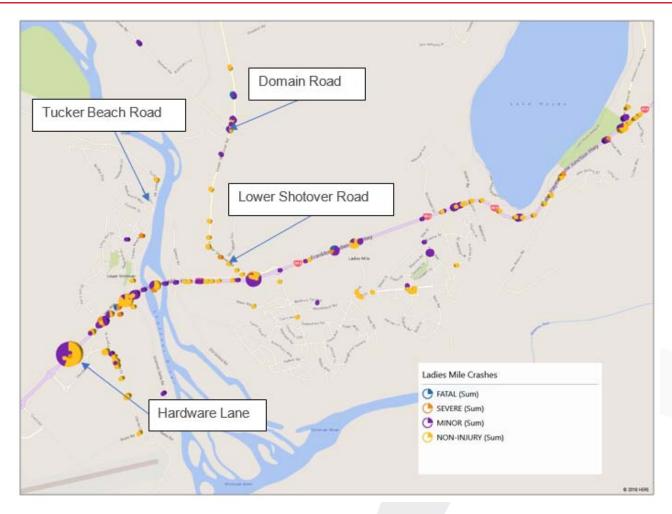


Figure 12: Crashes over the last 10 years in Ladies Mile

From the figure above, the biggest clustering of crashes (all severity) is west of the Shotover River on SH6 with the intersection of SH6 and Hardware Lane (previously Glenda Drive). Glenda Drive was previously a T-intersection and had two exit lanes and one entering lane at the intersection. This was converted to Hardware Lane, a one-way road with an exit only for pedestrians and cyclists, no crashes have been recorded since.

The other location with a historic clustering of crashes has been the Lower Shotover Road and SH6 intersection. This intersection has also been converted to a roundabout and no crashes have been recorded since.

There has only been one pedestrian crash in the past 10 years which occurred in 2007 and resulted in minor injuries. There have been four crashes involving cyclists which were minor and non-injury crashes, one on the intersection of Domain Road and Lower Shotover Road, two on Tucker Beach Road, and the last one on Glenda Drive.

3.8 Existing Traffic Conditions

3.8.1 Daily Traffic Volumes

The section of SH6 between Stalker Road and Howards Drive had an average daily traffic two-way volume of 15,777 in 2017, according to Traffic Monitoring System data. Figure 13 highlights the seasonal variability on the road. A lull in demand is apparent in April and May when tourist numbers typically decline. There now appears to be only one 'shoulder season' with October and November volumes now mostly above the yearly average.

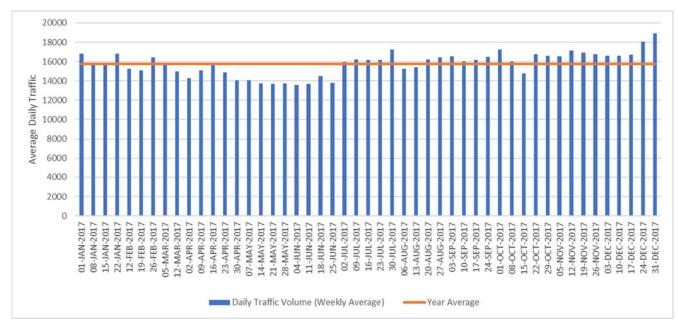


Figure 13 2017 Annual Variability in Daily Traffic Volumes East of Shotover Bridge

3.8.2 Peak Hour Traffic Volumes

Traffic volumes on Ladies Mile are tidal due to the large residential developments to the east and employment centres to the west. Previous analysis of traffic data found that the morning peak hour (07:30-08:30) is critical with a westbound volume of 1,451 measured in the last week of January 2018¹. Table 3 summarises the peak hour traffic volumes on Ladies Mile.

Table 3 Peak Hour Traffic Volumes on Ladies Mile East of Shotover Bridge

	AM	PM
Eastbound	706	1,255
Westbound	1,451	998

As can also be seen in Figure 13, the last week of January 2018 count is fairly representative of average conditions throughout the year, particularly considering that the rolling average through the year is actually increasing at a significant rate (see later section on background traffic growth).

Turning counts were undertaken at the Ladies Mile intersections with Howards Drive and Stalker Road on Wednesday 24th January 2018, summarised in figures Figure 14 and Figure 15. These intersections are the sole accesses to the Lake Hayes Estate and Shotover Country developments. A new access road on the northern approach to the Howards Drive roundabout is proposed under all Ladies Mile programmes. It should be noted that volumes shown at McDowell Drive were summed from volumes observed at the other intersections.

www.wsp-opus.co.nz ©WSP OPUS | JUNE 2018 PAGE 22

¹ Ladies Miles HIF Development Traffic Modelling Memo (WSP Opus, Feb 2018)

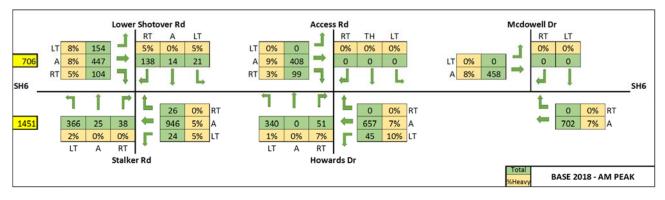


Figure 14 AM Ladies Mile Turning Count Summary (24th Jan 2018)

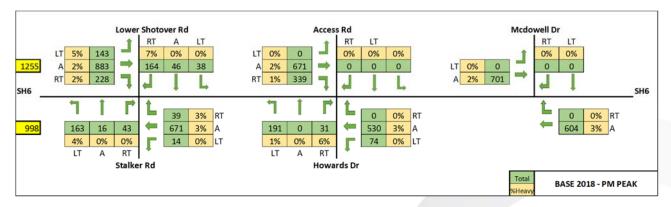


Figure 15 PM Ladies Mile Turning Count Summary (24th Jan 2018)

3.9 Traffic Growth

It is well established that traffic volumes across the Queenstown district have been increasing rapidly over the past 5-10 years. The highest volumes are present around Frankton and on SH6A into the town centre, but as shown in Figure 16, volumes have recently increased at a high rate across the network. The green line with red markers shows average daily traffic on SH6 at the western end of Ladies Mile, where the average annual 10-year growth rate is 3.0% and 5-year growth rate is 8.5%. Annual traffic growth at the site has been close to 12% for 2016 and 2017.

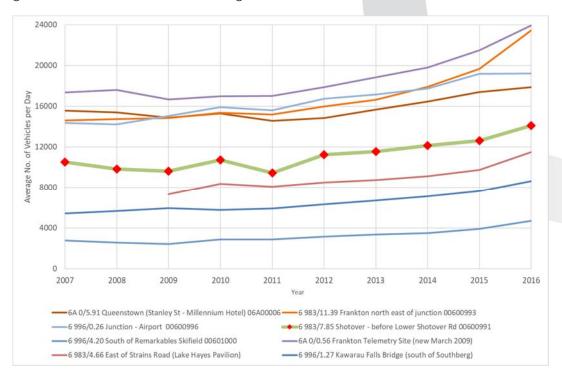


Figure 16 Wakatipu Basin Annual Average Daily Traffic (2007-2016)

www.wsp-opus.co.nz ©WSP OPUS | JUNE 2018 PAGE 23

4 Transport Analysis

This section presents the methodology, inputs and results of the transport modelling undertaken for the project.

4.1 Transport Modelling Overview

A spreadsheet model was developed using measured traffic volumes and trip generation rates to determine existing and anticipated traffic demands on the SH6 corridor. Traffic generated by the development was then distributed around a simplified Ladies Mile network based on existing travel patterns. Different mode shares were then tested for each of development, local residential and regional traffic. Resulting volumes were compared against the known capacity of the corridor to gauge the scale of intervention required to keep the highway operating below capacity in the future. Turning volumes were then extracted from the model to assess future intersection performance.

Traffic volume models were developed for both morning and evening peaks but the assessment focussed on the morning peak, which was found to be critical in terms of total traffic volume. The morning peak also directly affects Ladies Mile, with congestion and queueing extending eastwards from the Shotover Bridge. Evening peak demands on Ladies Mile are restricted by the Shotover Bridge and travel patterns are assumed to be approximately the reverse of the AM peak.

4.1.1 Data Sources

Table 4 summarises the data used to develop the Ladies Mile transport model.

Table 4 Data	Sources for	Ladies Mile	Transport Model

Turning Counts	Queenstown TRACKS Model	Ladies Mile Housing Infrastructure Fund Business Case	NZTA Traffic Monitoring System (TMS)	Occupancy Surveys
Undertaken 23/1/2018 at Howards Drive and Stalker Road. Factored for seasonality using TMS data. Informed 'local' traffic demand in the model	Select Link analyses informed trip distribution of regional traffic (from SH6 east)	Model scenarios were developed (Section 4.3) based on number of dwellings, network loading and building rates proposed in the business case	Extracted at Strains Road and Shotover Bridge, informed current SH6 traffic demand and growth rates	Undertaken 17/5/2018, informed the potential number of cars taken off the road by PT interventions

4.1.2 Assumptions

The following assumptions were used to build the model:

- Trip generation and distribution at Ladies Mile will be the same as at the Lake Hayes and Shotover Country developments. This was measured in manual turning counts surveys
- Traffic flows calculated by the model are demand flows rather than actual flows; the model does not consider network capacity constraints
- Growth from Lake Hayes and Shotover Country is capped to reflect the planned total number of houses at the estates

www.wsp-opus.co.nz ©WSP OPUS | JUNE 2018 PAGE 24

- Existing public transport share and the proportion of regional traffic using Arthur's Point to access Queenstown are implicit in the base traffic counts; any changes to these figures in the model is relative to existing conditions
- Interpeak volumes are the average of AM and PM peak volumes, reduced by 10%. This reduction is based on data from the Strains Road TMS site
- All growth rates are linear

4.1.3 Traffic Growth Rates

Background growth in the model was applied for regional (originating east of Ladies Mile) and local traffic (originating in Lake Hayes and Shotover Country estates) separately.

Growth on SH6 was based on historic growth at NZTA TMS sites 00600991 (SH6 near Lower Shotover Road) and 00600988 (SH6 near Strains Road). Figure 17 highlights the trend seen in traffic growth around Queenstown, whereby volumes have been increasing at a faster rate in recent years. The rate at which traffic grows in the future is dependent on several unpredictable factors. The following growth scenarios were therefore adopted in the transport model:

- Low growth (3.07%): 10-year (2007-2017) growth rate on SH6
- Medium growth (5.69%): 5-year (2012-2017) growth rate on SH6
- High growth (9.00%): 2-year (2015-2017) growth rate on SH6
- Medium to low growth (5.69% flattening by 0.1% per year): 5-year (2012-2017) growth rate on SH6 reducing each year

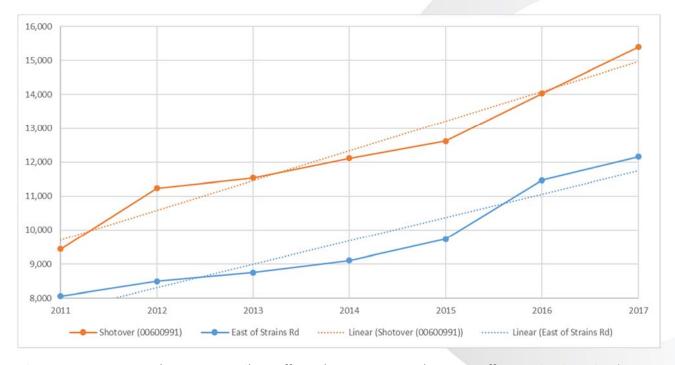


Figure 17 SH6 Annual Average Daily Traffic Volumes on SH6 (NZTA Traffic Monitoring Sites)

Growth from the Lake Hayes and Shotover Country estates was based on the number of houses and jobs in place at 2016 (1,102) and planned final households and jobs (1,330). Growth was capped at the expected final build. The following growth scenarios were therefore adopted in the transport model:

- Low growth (1.15%): 50% expected completion rate at Lake Hayes Shotover Country
- Medium growth (1.72%): 75% expected completion rate at Lake Hayes Shotover Country
- High growth (2.30%): 100% expected completion rate at Lake Hayes Shotover Country
- Medium to low growth (1.72% flattening by 0.05% per year): 75% expected completion rate at Lake Hayes Shotover Country

There is likely to be to be a change in commuter patterns following the development of the site, in that the availability of local housing may reduce the number of regional commuters travelling to Queenstown. However, measured data suggests that background growth has continued despite construction of various residential developments around Queenstown. Additionally, recreational traffic makes up a significant amount of the volume observed on SH6, and is not expected to change as a result of the Ladies Mile development.

4.1.4 Corridor Capacity

The capacity constraint nearest to the development is the section of SH6 either side and including the Shotover Bridge, which is restricted to one lane in each direction and necessitates a merge from 2 lanes on the approach from either side. Traffic flow on the section is further reduced by steep gradients on both sides of the bridge and interactions with traffic exiting Tucker Beach Road. The capacity of the bridge has been assessed previously² at 1,590v/h using calculation methodologies in NZ Transport Agency Economic Evaluation Manual and Austroads Guide to Traffic Management Part 3.

In order to provide more certainty in the operation and capacity of the bridge, on-site surveys and observations were carried out on 19th, 20th and 21st June 2018. This showed:

- The constraint to westbound operation of the section is the interaction between the Tucker Beach Road intersection and the uphill gradient towards Frankton, both on the west side of the bridge
- Due to the heavy westbound flow over the bridge in the morning peak, vehicles turning right out of Tucker Beach Road towards Frankton frequently accepted short gaps in the westbound traffic stream, or turn across the eastbound lane into the right turn pocket to wait for gaps. This subsequently causes westbound trough vehicles to brake, resulting in slow subsequent acceleration on the downstream uphill section
- This behaviour then causes queue shockwaves to develop back to the Stalker Road roundabout, and specifically the two to one lane merge on the exit. Once the merge behaviour is at slow speed, it does not recover until the demand falls significantly

On 21st June, the slow merging behaviour was observed over a full hour period, with throughput of 1515 vehicles in the hour

As noted in the previous section, the Tucker Beach Road intersection improvements are due to be implemented by April 2019. This will re-assign the right turn movement out of the side road to move under the SH6 carriageway, and join a westbound ramp, merging with the SH6 westbound lane on the uphill section prior to Hardware Lane. It is expected that this will provide a small degree of additional capacity (by replacing the existing right turn movement, with a downstream merge), but due to the merge being on the uphill gradient and the presence of a significant level of heavy vehicles, the impact will be relatively minor.

Consequently, the observed 1,515v/h maximum throughput has been set to 1,600v/h to represent this improvement, and has been adopted as the nominal capacity of the bridge.

Consequently, should the demand on this westbound link be over 1600v/h, additional vehicles will be served outside of the hour, and a residual queue will build up - this is what is currently being observed in the morning peak period. This therefore has an impact on the operation of the Ladies Mile section of SH6, with queues in the morning peak stretching back beyond the Stalker Road roundabout and, on occasions, Howards Drive. Due to the unpredictable nature of the pinch point downstream (individual vehicle incidents at the Tucker Beach intersection, and on the downstream uphill second), the variability in operation, and resultant queue lengths, within this section can be significant from day to day, even with similar levels of demand.

www.wsp-opus.co.nz ©WSP OPUS | JUNE 2018 PAGE 26

² Ladies Mile HIF - Update to Previous Traffic Assessment Memo (WSP Opus, 19 March 2018)

In the eastbound direction, the pinch point in the network is the two to one lane merge between the Hawthorne Drive roundabout and the Tucker Beach Road intersection, which is critical in the PM Peak period. On occasions, queues in this period can stretch back into Hawthorne Drive and Grant Road. However, the effect of this is to provide an eastbound gate to traffic passing over the bridge, and therefore traffic generally flows in a free-flow state in the Ladies Mile section – and consequently our analysis has centred on the AM peak period operation. However, it is noted that any additional traffic due to the Ladies Mile development, is likely to increase operational issues in the eastbound direction in the PM peak period.

While the bridge has been identified as the immediate constraint on capacity for the Ladies Mile site, the wider corridor is geographically constrained by the Shotover and Kawarau rivers, Lake Wakatipu and Queenstown Hill. Increasing general capacity on the Shotover Bridge will migrate congestion downstream without a significant level of other further network interventions along SH6 and SH6A, and within Frankton and Queenstown.

4.1.5 Arthur's Point Diversion

Rerouting a proportion of regional traffic through Arthur's Point was examined as a way of reducing demand on the Shotover Bridge. A Select Link Analysis of the Queenstown TRACKS model revealed that there are approximately 155 regional peak-hour trips into Queenstown that could feasibly be rerouted. However, the route into Queenstown is approximately 40% longer than SH6 from Arrow Junction, and is constrained by a one-way bridge at Arthur's Point. It is therefore anticipated that no more than 20% of regional trips would use the route. The resulting reduction in demand (i.e. around 30 vehicles per hour) at Shotover Bridge would have minimal effect on capacity of the corridor.

Malaghans Road is also of lower standard than the State Highway, and as such presents a less safe route.

4.2 Future Baseline Conditions

Figure 18 shows the forecast westbound demand at the Shotover Bridge from local (bars) and regional (lines) traffic, without the Ladies Mile development.

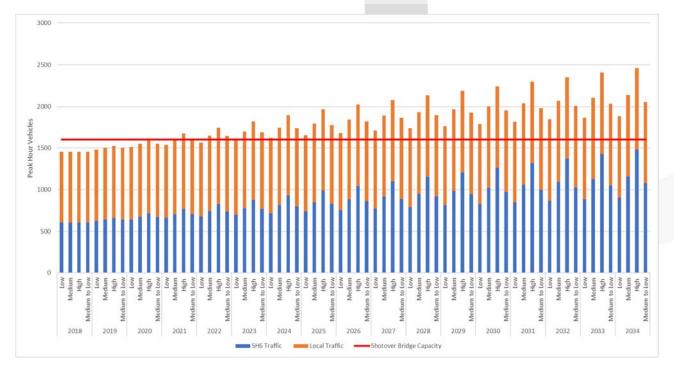


Figure 18 Forecast Traffic Demand at Shotover Bridge (SH6 and Local)

At existing levels, a slight majority of westbound traffic is generated locally. Regional traffic is expected to make up the majority by 2028 (medium and high growth scenarios). As described in Section 4.1.4, the capacity of the Shotover Bridge is approximately 1,600 veh/h, a value which background traffic alone is forecast to reach between 2020 and 2024 for the average demand, assuming no additional development over that already consented, and based on the January 2018 demand of 1451v/h. Note, that demand fluctuates on a day to day level, and this level will likely to be reached prior to 2020 in some high-demand days.

4.3 Future Reference Case

Due to uncertainty in the various parameters generating future traffic demands, several scenarios were developed for each of 6 variables for years 2018-2048. Traffic demands were calculated for all combinations of scenario inputs.

A reference case comprising the expected level for each parameter was chosen to base the overall assessment on. Sensitivity testing was then carried out from the reference case. Table 5 summarises the reference case (highlighted) and possible combination of scenarios.

Table 5 Summary of Transport Model Variables

Growth Rate	Low - SH6: 3.07%; Local: 1.15% Medium - SH6: 5.69%; Local: 1.72%	Growth rates for SH6 traffic were determined using data from counters on SH6.	
	High - SH6: 9.00%; Local: 2.30% Medium to Low - As Medium with SH6 growth tapering by 0.1% per year and local growth tapering by 0.05% per year	Growth rates for local traffic were determined from the 2018 buildout of Lake Hayes and Shotover Country and expected completion date.	
Number of Dwellings	Programme 1: 450 lots Programme 2: 750 lots Programme 3: 1,100 lots Programme 4: 2,185 lots	Various proposals were put forward for different development sizes as part of the HIF DBC, ranging from realistic to more aspirational dwelling numbers. Road access to the site differs depending on the scale of development.	
Construction Start	2020 2022 2024	Year in which construction begins - effect of background traffic by time of completion	
Build Rate (dwellings/y)	75 100 125	Build rates were adopted based on observed rates at other local developments, cognisant that there is a finite supply of labour available locally.	
Arthurs Point Diversion	<mark>0</mark> - 20%	The effect of increasing the attractiveness of the route into Queenstown through Arthurs Point was examined as a way of reducing regional trips along Ladies Mile.	

Trip Reduction Factor	<mark>0</mark> – 20%	A trip reduction factor was used
		for a general sensitivity test of
		demands on the corridor.

The medium growth rate scenario (5-year rate) was adopted for the reference case due to recent sustained growth in commercial and residential developments around Queenstown. Traffic growth continuing at the 2-year rate is considered possible but unsustainable, while it is expected that only a downturn in the economy would cause a return to the 10-year rate, despite the increase in local housing availability. Growth rates are discussed in more detail in Section 4.1.3.

The preferred Programme for the Ladies Mile site is 1,100 houses. However, preliminary model testing showed that the highway is unlikely to have capacity to support development of that scale. Therefore, the more achievable Programme 2, with 750 houses, was adopted for the reference case.

Given the urgent need for housing in Queenstown, the highest feasible build rate of 125 houses/year was adopted for the reference case. Tests also revealed that slower build rates would result in highway capacity being reached by the time of development completion due to background growth. Similarly, it is assumed that building would commence as soon as possible, so 2020 was chosen for construction to start.

The Arthur's Point diversion (discussed in Section 4.1.5) and trip reduction factor parameters were set at zero for the reference case.

In addition to the demand scenarios, the level of public transport mode shift and Park and Ride uptake could be altered to determine the scale of intervention required for volumes to remain below capacity (discussed in Section 4.5).

4.4 Trip Generation

Traffic generated from the Ladies Mile site is assumed to have the same characteristics as that from the Lake Hayes and Shotover Country estates. Trip generation rates were calculated from turning counts undertaken on 24th Jan 2018 and the known build-out of the housing developments. These were foud to be consistent with empirical data from the Trips Database Bureau, as shown in Table 6, and were therefore used in the modelling.

Table 6 Ladies Mile Trip Generation Rates

	AM PEAK		PM PEAK	
	OUT	IN	OUT	IN
Shotover Country/Lake Hayes	0.55	0.19	0.30	0.47
TDB Database	0.49	0.26	0.40	0.58

4.5 Modelling Results

This section presents results from the traffic volume modelling, a spreadsheet developed from first principles, and intersection modelling, undertaken in SIDRA intersection 7.

4.5.1 Corridor Modelling Results

The corridor model tested highway loading from the 4 proposed development programmes, under a range of scenarios, described in Section 4.3. Results presented here are based on the reference case assumptions for the different programmes (total number of dwellings and completion year).

www.wsp-opus.co.nz ©WSP OPUS | JUNE 2018 PAGE 29

Id be prohibitively expensive.

Table 7 shows that, without interventions to reduce demand, capacity is expected to be reached before the Ladies Mile development is complete under all programme scenarios. Demand can be limited in Programme 1 without a park and ride on SH6, subject to the alternative mode shares shown being achieved. Programme 2 is anticipated to require a park and ride on SH6 with a capture rate of 20% by completion. Programmes beyond a yield of 750 houses would require step-change interventions to provide the capacity to allow the required mode shifts. However, this would require higher levels of mode shift than could be reasonably be expected and any off-highway solutions, such as mass rapid transit would be prohibitively expensive.

Table 7 Traffic Demand Analysis Results for Proposed HIF Programmes

HIF Programm e	Number of Forecast traffic above capacity at (year development		Mode Shift Required to Reduce Demand at Shotover Bridge to 1,600v/h			
	complete)	completion	Ladies	Shotover	SH6 Park	
	, GO,p.1636)	omplete) completion		Country/Lake Hayes	and Ride	
1	450 (2023)	285	15%	25%	0%	
2	750 (2025)	508	15%	25%	20%	
3	1,100 (2028)	770	40%	40%	20%	
4	2,185 (2037)	1,570	50%	50%	40%	

It should be noted that combinations of different mode shares listed in Id be prohibitively expensive.

Table 7 can achieve the same result in regard to demand at the Shotover Bridge; the values shown are considered to be the most achievable. Lake Hayes and Shotover Country have higher assumed shares than Ladies Mile due to the planned Remarkables Gondola, which is expected to significantly reduce the number of private trips to Wakatipu High School. The completion date of 2023 for Programme 1 is considered too early to realistically construct a Park and Ride on SH6 with adequate ridership. However, a park and ride will be required in the 2025 reference case, in addition to the mode shift required by 2023.

The implications of these results, in terms of the level of service and practicalities of public transport provision, are discussed in Section 6.1. Service frequency and infrastructure triggers to support mode shift are discussed in Section 0. Sensitivity testing of key assumptions is discussed below.

4.5.2 Sensitivity Tests

Sensitivity test have been carried out around the reference case assumptions to assess the potential impact of different public transport mode share and traffic growth rates on future traffic demands. All other variables are constant as defined by the reference case. It should be noted that a park and ride is assumed to be constructed 2024-2025, with capacity doubling over the 2 years. The scenarios tested were:

- High (+5%), medium (reference), low (-5%) and lower (-10%) public transport mode shares
- High, medium and low growth rates (as per scenarios described previously)

Figure 19 shows that capacity on the corridor would be exceeded by approximately 70veh/hour in 2023 if public transport mode shares are 5% lower than stipulated in the reference case. This equates to an increase in queue length of approximately 500m, and an

extra delay per vehicle of 75 seconds. With the SH6 park and ride becoming operational (at a 5% lower capture rate) over 2024-2025, demand above capacity remains at a relatively constant rate (between 50v/h and 100v/h over capacity) until 2026.

If public transport mode shares are 10% lower than the reference case, capacity on the corridor would be exceeded by approximately 170veh/hour in 2023, creating additional queuing of approximately 1,000m.

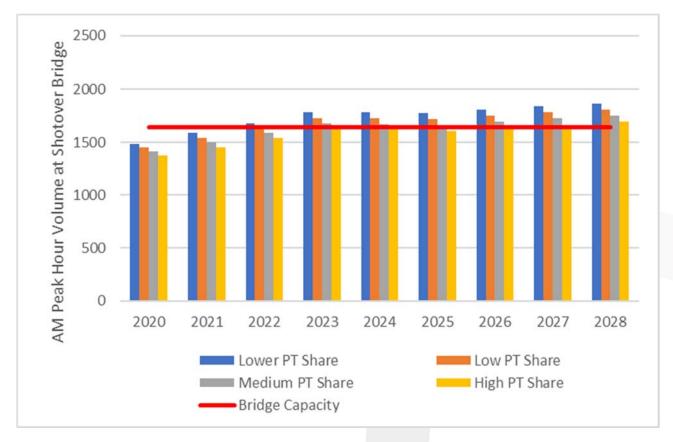


Figure 19 Public Transport Mode Share Sensitivity Test

Figure 20 shows that capacity on the corridor would be exceeded by 2023 if growth continues at observed 2-year annual rates (9.00%). Implementing the park and ride suppresses demand at the Shotover Bridge for 2 years before volumes begin to increase again.

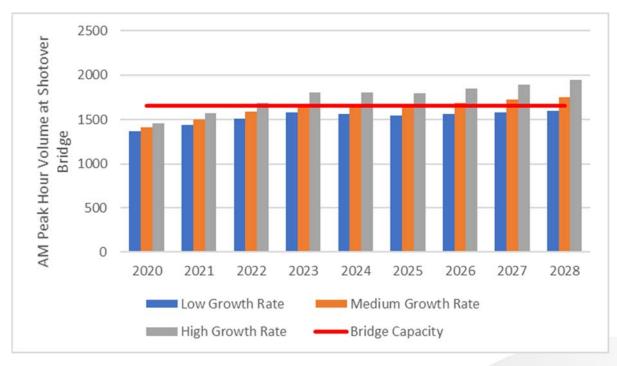


Figure 20 Traffic Growth Rate Sensitivity Test

Without any intervention to reduce forecast transport demand, capacity of the Shotover Bridge is expected to be reached by 2021, even under a low growth scenario (Figure 21). Although lower build rates mean that capacity on SH6 is reached later, it is still reached before the development would be complete as a result of background growth.

Growth Rate	Programme	Units/year	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
Medium to Low Growth	Programme 2	125	1451	1499	1604	1708	1811	1913	2014	2114	2177	2212	2246
Low Growth	Programme 2	125	1451	1479	1566	1652	1738	1825	1911	1998	2016	2035	2053
High Growth	Programme 2	125	1451	1525	1657	1789	1921	2053	2185	2317	2372	2427	2481
Medium to Low Growth	Programme 2	75	1451	1499	1581	1662	1741	1820	1898	1975	2073	2142	2212
Medium to Low Growth	Programme 2	100	1451	1499	1592	1685	1776	1867	1956	2044	2154	2212	2246
Medium to Low Growth	Programme 2	125	1451	1499	1604	1708	1811	1913	2014	2114	2177	2212	2246
Medium to Low Growth	Programme 1	125	1451	1499	1604	1708	1811	1890	1933	1975	2038	2073	2107
Medium to Low Growth	Programme 3	125	1451	1499	1604	1708	1811	1913	2014	2114	2235	2328	2409
Medium to Low Growth	Programme 4	125	1451	1499	1604	1708	1811	1913	2014	2114	2235	2328	2421

Figure 21 Forecast Traffic Demand at Shotover Bridge Without Increased Mode Share (red signifies capacity exceeded)

Figure 20 shows that for the reference case, a relatively high mode share of 25% is required to reach "perfect" equilibrium on the bridge – that is, the additional trips over 1,600v/h are all accommodated by other modes. By 2025, the required alternative mode share is likely to be above 20%, even under a low growth scenario. For the reference case, the required alternative mode share is expected to reach 30% by 2029. For context, the national average for alternative mode share in New Zealand was 18% between 2015 and 20173. Alternative modes made up 22% of commuter trips in Auckland and 35% of commuter trips in Wellington in the 2013 census.

It should be noted that the proportions given are relative to the Shotover Bridge capacity and refer to an increase from the existing alternative mode share. That is, 0% in Figure 22 represents the existing base mode share rather than zero alternative mode share.

www.wsp-opus.co.nz ©WSP OPUS | JUNE 2018 PAGE 32

³ New Zealand Household Travel Survey (Ministry of Transport, December 2017)

Growth Rate	Programme	Units/year	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
Medium to Low Growth	Programme 2	125	0%	0%	0%	3%	10%	16%	21%	25%	27%	28%	29%
Low Growth	Programme 2	125	0%	0%	0%	0%	5%	11%	15%	20%	21%	22%	22%
High Growth	Programme 2	125	0%	0%	0%	9%	16%	23%	28%	33%	35%	37%	39%
Medium to Low Growth	Programme 2	75	0%	0%	0%	0%	6%	10%	15%	19%	22%	25%	28%
Medium to Low Growth	Programme 2	100	0%	0%	0%	2%	8%	13%	18%	22%	26%	28%	29%
Medium to Low Growth	Programme 1	125	0%	0%	0%	3%	10%	14%	17%	19%	21%	22%	23%
Medium to Low Growth	Programme 3	125	0%	0%	0%	3%	10%	16%	21%	25%	29%	33%	35%
Medium to Low Growth	Programme 4	125	0%	0%	0%	3%	10%	16%	21%	25%	29%	33%	36%

Figure 22 Alternative Mode Share Required to Meet Shotover Bridge Capacity (purple lines indicate development programme build time)

Figure 23 highlights the scale of demand over capacity in terms of the capacity of various public transport interventions. It is expected that by 2023, demand will exceed capacity at the Shotover Bridge by the amount of capacity offered by a Park and Ride facility (light blue), even under a low growth scenario, with individual bus capacity increasing to double deckers (dark blue) by 2027 in all but the low growth scenarios. By 2033, all scenarios in Figure 23 require low level Mass Rapid Transit, such as a gondola. However, this is an oversimplification, as in reality a range of measures would be more appropriate to serve the different trip patterns of local and longer distance traffic, and employment, visitor, education and retail trip types.

Growth Rate	Programme	Units/year	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
Medium to Low Growth	Programme 2	125	0	0	4	108	211	313	414	514	577	612	646	681	716	750	785	819
Low Growth	Programme 2	125	0	0	0	52	138	225	311	398	416	435	453	472	491	509	528	547
High Growth	Programme 2	125	0	0	57	189	321	453	585	717	772	827	881	936	990	1045	1100	1154
Medium to Low Growth	Programme 2	75	0	0	0	62	141	220	298	375	473	542	612	681	716	750	785	819
Medium to Low Growth	Programme 2	100	0	0	0	85	176	267	356	444	554	612	646	681	716	750	785	819
Medium to Low Growth	Programme 2	125	0	0	4	108	211	313	414	514	577	612	646	681	716	750	785	819
Medium to Low Growth	Programme 1	125	0	0	4	108	211	290	333	375	438	473	507	542	576	611	645	680
Medium to Low Growth	Programme 3	125	0	0	4	108	211	313	414	514	635	728	809	843	878	913	947	982
Medium to Low Growth	Programme 4	125	0	0	4	108	211	313	414	514	635	728	821	913	1006	1098	1191	1283

	Capacity	v/h	Load factor	Occupancy
Existing Load	40	4	40%	1
Existing Services	40	4	80%	1.3
Extra Local	40	8	80%	1.3
Bus P&R	40	14	100%	1.3
DD P&R	65	14	100%	1.3
Low MRT	10	180	100%	1.3
Max MRT	35	120	100%	1.3

Figure 23 Scale of Intervention Required to Meet Shotover Bridge Capacity

4.5.3 Intersection Modelling

SIDRA Intersection v7.0 has been used to assess the performance of proposed intersections under Programmes 1, 2 and 3 for the Ladies Mile development. Although traffic demand modelling indicates that anything beyond Programme 3 is likely to produce unsustainable traffic volumes from a corridor perspective, the performance of intersections under this loading has been tested. For each of the programmes, the AM peak and PM peak were analysed under the two layout options of Do Minimum, and Do Something.

Junction analysis confirmed that both roundabout and traffic signals would perform well under the proposed programmes. Traffic signals offer more efficient pedestrian access and allow for provision of bus priority, but roundabouts deliver higher capacity in the high-speed environment and reduce off peak delays for traffic. The Transport Agency have indicated that they would not support traffic signals on Ladies Mile due to safety concerns around signals on high speed roads (the environment would not support a reduction in posted speed limit) and the impact on efficiency for through traffic.

The Do Minimum option represents the simplest form of an access point for the development to take place. For the Howards Drive intersection, this means a simple priority-T intersection and for the Stalker Road roundabout, the intersection was assumed to remain as existing. The Do Minimum scenario assumes there will be no mode shift for all programmes.

The Do Something option represents the interventions discussed in Section 6 of this report, which are intended to reduce traffic demand of the corridor. These include mode shift to public transport through high occupancy vehicle priority and a park and ride facility. Based on vehicle occupancy surveys (discussed in Section 4.1.1), it is assumed that 25% of the light vehicles would use the transit lanes as well as all heavy vehicles and buses. A peak flow factor of 100% is used across all modelling, due to expected peak spreading resulting from congestion.

It should be noted that the intersection modelling has been undertaken on an isolated basis. That is, the traffic demand has been loaded onto each intersection in each scenario, to determine whether the proposed access arrangements are sufficient to accommodate such traffic levels. In the AM peak, the pinch point within the network is to the west of Ladies Mile, on the SH6 link through Shotover Bridge. This isolated intersection modelling is unable to take into account the complex relationship between this downstream pinch point and the operation of the two access intersections – this more complex network operation would require a more comprehensive traffic modelling exercise to be carried out, which is outside the scope of this assessment.

Summary Table

The results from the SIDRA analysis are summarised in Table 8. The full output summaries for all models can be found in Appendix B.

Programme	Time	Performance											
	of day	Do	Minimu	ım	Do Something								
	•	Intersection LOS	Max DoS	Average Intersection Delay (s/v)	Intersection LOS	Max DoS	Average Intersection Delay (s/v)						
Programme 1 2023	AM	F	1.81	71	A	0.64	8						
12020	PM	А	0.57	9	Α	0.51	8						
Reference Case 2025	AM	F	2.46	132	А	0.76	9						
0430 2023	PM	А	0.67	10	А	0.51	9						
Programme 3 2028	AM	F	2.72	168	Α	0.69	9						
2223	PM	А	0.91	13	Α	0.58	9						

The Do Something Option (Option 1) shows that the anticipated volumes can be supported with the recommended interventions under all three programmes, in both peak periods. In reality, in the AM peak period, the downstream link constraint at Shotover Bridge would result in some queueing back to this roundabout, as has been observed intermittently in 2018. However, the proposed shift to alternative modes ensures that such issues are of a similar level to the existing situation.

For the Do Minimum Option (Option 0), significant delays are predicted at the roundabout in the AM peak hour period, in particular on the Stalker Road approach, which must give way to all other westbound state highway traffic. In reality, the breakdown in westbound traffic flow due to the downstream constraint at this location would result in a more even split in delay to all approaches, as vehicles would push into the slow-moving traffic streams on the circulating lanes. However, it is the case that the lack of shift to other modes in this scenario results in poor operation of both the intersection and the wider network.

www.wsp-opus.co.nz ©WSP OPUS | JUNE 2018 PAGE 34

Table 9 SIDRA Modelling Summary - Howards Drive Intersection

programme	Time of day	Performance											
	Ol day			Do Something									
		Howards Drive South Priority Intersection				rds Drive ty Interse		Howards Drive Roundabout					
		LOS	Max DoS	Delay (s)	LOS	Max DoS	Delay (s)	LOS	Max DoS	Delay (s)			
Programme 1	AM	F	0.89	11	F	9.06	758	А	0.30	7			
2023	PM	F	1.50	15	F	3.18	105	А	0.40	7			
Reference	AM	F	1.58	69	F	19.64	1596	А	0.34	7			
Case 2025	PM	F	3.48	54	F	5.25	186	А	0.38	8			
Programme	AM	F	3.18	202	F	49.5	5095	А	0.34	7			
2 2028	PM	F	7.67	181	F	17.8	886	А	0.40	8			

The Do Something Option (Option 1) shows that the anticipated volumes can be supported with the recommended interventions under all three programmes, in both peak periods. This demonstrates that the proposed access arrangements are of a suitable scope to accommodate forecast traffic levels, with only a negligible increase in travel times for through movements on SH6 (which are currently unopposed in the existing situation).

For the Do Minimum Option (Option 0), significant delays are predicted on the side roads at both intersections, predominantly due to minimal gaps available to traffic turning right out of both links. This shows that traffic from both the Ladies Mile development, and existing movements from Howards Drive are forecast to experience significant delay without such an intersection improvement proposed.

5 Transport Economic Analysis

Economics have been undertaken from a transport infrastructure investment perspective. Development Programmes 1 and 2 have been assessed in Do Minimum and Do Something scenarios, as in the intersection modelling, to ascertain the relative benefits of implementing the transport strategy described previously in this report.

The Do Minimum is a hypothetical scenario in which housing, and associated traffic generation, is assumed to have been built without any of the supporting transport improvements.

The Do Something scenario considers all housing to be in place, as well as the proposed transport improvements.

Approaching the economics with these scenarios enables an isolated assessment purely of the transport improvements without influence from the costs and benefits stemming from providing the housing itself.

Through traffic demand modelling, programmes 3 and 4 have been found to require step-change level public transport interventions, with travel demand reaching a level only provided by MRT. While network demand is forecast to reach such levels, population density would be too low to make MRT commercially viable. A single terminal would not provide for an adequate catchment while multiple terminals would further increase cost. Rough order costing, provided by Doppelmayr, for an MRT solution (gondola from Ladies Mile to Frankton) put the costs in the region of \$80m to \$95m. As presented later in this section, programmes 1 and 2 produce less than \$15m in benefits, indicating that the additional cost of an MRT solution would far outweigh the

www.wsp-opus.co.nz ©WSP OPUS | JUNE 2018 PAGE 35

benefits provided for Programmes 3 and 4. These programmes were therefore not considered further.

5.1 Methodology

The methodology prescribed by the NZ Transport Agency's Economic Evaluation Manual (EEM) First Edition, Amendment 1 (January 2016) was used to evaluate the indicative Benefit Cost Ratio (BCR) for each programme. The EEM full evaluation procedures were used, specifically evaluating benefits associated with travel time benefits. The travel time benefits are based on SIDRA outputs, which represent isolated intersections and not a network model as discussed in Section 4.5.3.

Crash reduction analysis has not been undertaken as part of the economics as the majority of total crashes in the past 10 years have been either minor or non-injury crashes, as discussed in the Road Safety section. Therefore, it is considered that the crash reduction saving will not contribute significantly to the overall BCR.

The costs included in the analysis are the construction costs of the intersection upgrades and the estimated annual maintenance costs for existing and upgraded intersections.

The assumptions made in the economic analysis, the evaluation summaries and the construction costs are in Appendix C.

5.2 Results and Conclusions

The economics evaluation results for Programme 1 and 2 is summarised in Table 10 and Table 11 respectively, below.

Table 10 Programme 1 Economic Evaluation

ITEM	DO MINIMUM (\$)	DO SOMETHING - PROGRAMME 1 CORRIDOR IMPROVEMENTS (\$)	OPTION COMPARISON (NET BENEFIT AND COSTS OF DO SOMETHING \$)
Travel Time Cost	18,982,000	8,329,000	10,653,000
Total NPV Benefits			\$10,653,000
Capital Costs	486,000	5,400,000	\$4,914,000
Maintenance Costs	157,000	157,000	-
Total NPV Costs			\$4,914,000
BCR			2.17

Table 11 Programme 2 Economic Evaluation

ITEM	DO MINIMUM (\$)	DO SOMETHING - PROGRAMME 2 CORRIDOR IMPROVEMENTS (\$)	OPTION COMPARISON (NET BENEFIT AND COSTS OF DO SOMETHING \$)
Travel Time Cost	22,504,000	8,975,000	13,529,000
Total NPV Benefits			\$13,529,000
Capital Costs	486,000	5,400,000	\$4,914,000
Maintenance Costs	157,000	157,000	-
Total NPV Costs			\$4,914,000

www.wsp-opus.co.nz @WSP OPUS | JUNE 2018 PAGE 36

The economics evaluation results summarised above show that the proposed highway infrastructure associated with both Programmes 1 and 2 generates strong BCRs of 2.17 and 2.75, respectively. By, including other sources of benefits, such as VOC, CO₂, and crash cost savings, the BCRs are likely to increase slightly.

Based on the BCR results above, the overall transport corridor improvements included in Programme 1 and 2 are considered sufficient to address the potential adverse transport effects caused by the development of Ladies Mile HIF and to provide a sustainable access for the Ladies Mile site.

6 HIF Site Strategy for Access and Movement

The level of demand that needs to be supressed to achieve future peak hour traffic volumes below 1,600 on SH6 is identified in the Transport Analysis section of this report. A range of public transport, active mode and Travel Demand Management (TDM) interventions need to be implemented in order to achieve the required mode shift and to not breach the 1600 vehicle threshold of the Shotover Bridge.

Interventions should be considered and designed in collaboration with regional and local plans such as the Wakatipu Active Transport Network DBC, SH6 Grant Road to Kawarau Falls DBC and Future PT Demand Analysis Projects.

It is also important to capitalise on the change opportunity that exists when new residents first move into the area and establish their travel behaviour. Individual transport interventions presented here are intended to be part of a system and will be less effective if implemented separately. Individual improvements are unlikely to generate step changes in alternative mode share at key trigger points (except Mass Rapid Transit and Park and Ride). Rather, transport choice should be provided from the outset and scaled to meet growing demands as development occurs.

The mode shift assumptions used in this assessment will not be achieved without significant and sustained efforts to encourage travel by alternative modes of transport. This involves the provision of improved public transport, walking and cycling facilities coupled with behavioural change initiatives. Some potential approaches are discussed below but these will need to be developed in more detailed through further studies.

6.1 Public Transport Improvements

Public transport should be frequent, reliable, timely and safe to be considered as a realistic alternative from single occupancy car trips. Buses travel in the same stream as private cars so need to be given priority in order to make them more attractive than travelling by car. Potential public transport interventions include:

- Increase in frequency (detailed in Phasing Strategy section of this report) of bus services through Ladies Mile, Lake Hayes and Shotover Country.
- Carefully designed bus routes. Convenient access needs to be provided throughout both the Ladies Mile site and existing developments, including express routes for residents close to the highway. Existing barriers to bus travel, such as interchange waits of 60 minutes and inconsistent service between inbound and outbound routes should be designed out of the new network.
- Safe and accessible bus stop infrastructure. All residents should be within 200m of a
 bus stop to maximise catchment. Bus stops should feel safe, be located in lit areas and
 match desire lines of pedestrians, whilst allowing for road crossings.

www.wsp-opus.co.nz ©WSP OPUS | JUNE 2018 PAGE 37

- Introduction of effective bus priority and transit lanes (as shown in Appendix D) on SH6. It is anticipated that priority at bottlenecks along SH6 will be investigated as part of the Future PT Demand Analysis project. The transit lanes should be designed to fit in with these priority measures.
- Offer promotional ridesharing 'Savvy' trips to encourage shared journeys where PT may not be available

6.2 Park and Ride

As discussed in the Transport Analysis section of this report, demand from regional and local traffic alone is expected to reach corridor capacity in the short term if left unabated. It is therefore important to capture a proportion of westbound regional traffic before it reaches the Shotover Bridge. The park and ride facility should:

- Provide frequent and direct routes and have priority over general traffic to ensure quicker journeys than by car
- Be designed within the highway strategy as demand for the facility is from regional traffic. The exact location of the facility should be determined as part of the highway strategy
- Be designed to discourage local residents from driving to the facility, as this would have the counter effect of increasing traffic volumes. The facility should be accessible by active modes for resident access
- Facilities must be good quality and comfortable for passengers to wait for and change buses

6.3 Walking and Cycling

Walking and cycling networks should be connected, direct and follow desire lines where practicable. Active mode provisions at Ladies Mile should:

- Connect Ladies Mile with key trip generators (supermarkets, schools, employment hubs) and destinations (Frankton, Queenstown CBD) and integrate well with public transport infrastructure (bus stops, Park and Ride).
- Provide cross-highway connectivity through an underpass to Lake Hayes estate and Shotover Country
- Provide paths with good sightlines and visibility, good lighting after dark and feel safe
- Provide cycle paths that are separated from traffic, direct, have minimal grades and be obstruction free
- Be designed in collaboration with the Wakatipu Active Travel Network DBC to maximise efficiency and utilise external strategic links. End of journey facilities, such as showers at work places and cycle racks should be implemented at destinations

6.4 Travel Demand Management

Travel Demand Management (TDM) can be used alongside physical infrastructure changes to encourage or redistribute people movements to different modes. TDM strategies used for similar developments to Ladies Mile have achieved a mode shift of up to 15% less car use. There are a range of measures that are relatively cheap to initiate and encourage behaviour change, such as:

- Targeted neighbourhood travel planning, providing information related to the local area and how to get to popular destinations
- Use of existing Choice app to assist in providing travel options for residents
- Incentives such as providing free Go Cards or subsidised public transport for a period of time
- Region-wide encouragement of travelling outside of peak times, working from home, using technology rather than travel to connect

- Potential to regulate requirements for the development to achieve a balanced mode share
- Advertise carpooling websites or apps where people can match to share commuter or recreational journeys
- Prioritise car parking for cars with 2+ occupants

6.5 Off-site Highway Improvements

An alternative to supressing demand at the Shotover Bridge is to provide additional capacity, through bridge widening or an additional link. A new bridge could double general traffic capacity or be implemented with bus lanes to prioritise public transport.

However, increasing capacity over the Shotover River will cause congestion at bottlenecks further west along the corridor. The bridge currently restricts the amount of traffic reaching Frankton Road, where capacity improvements are less feasible due to geographical constraints, Furthermore, a new bridge may be cost-prohibitive as the river is up to 400m wide and would require a significant structure. For these reasons, capacity upgrades over the Shotover River are unlikely in the short term.

7 Phasing and Delivery

This section sets out timing and triggers for the transport interventions recommended in previous sections of this report.

7.1 Phasing Strategy

The transport strategy laid out in Section 6 needs to be staged proactively such that required infrastructure is in place prior to capacity being reached on SH6. Staging should be tied in with other strategies and projects planned for the corridor, particularly with reference to the Future Public Transport Demand Analysis.

The phasing strategy presented here is based on the reference case and should be considered dynamic, in that it is centred on uncertain future conditions and should be updated depending on actual future conditions. If background traffic growth rates are higher than the assumed 5.69% or build rates are lower than 125 houses/year, it may be necessary to restrict construction of the development. Implementation of the strategy should also be cognisant of the lead times for design, procurement, consenting and construction to ensure interventions are in place in time. Effective monitoring of build rates and traffic growth rates is crucial to ensuring the success of the transport strategy.

Individual elements of the transport strategy are designed to be complimentary and should be implemented at the same time. For example, high quality bus stops alone are unlikely to affect mode share sufficiently and should be accompanied by active mode connections and priority measures on the network. Similarly, individual improvements are unlikely to generate step changes in alternative mode share at key trigger points (except Mass Rapid Transit and Park and Ride). Rather, transport choice should be provided from the outset and scaled to meet growing demands as development occurs.

7.2 Infrastructure Triggers

The triggers presented in A general allowance of 2 years should be made for infrastructure to be in place to allow for further business cases as required, funding, design, planning/consenting, land acquisition, procurement and construction to be completed.

Table 12 are based on the reference case assumptions adopted for this assessment (Section 4.3). It should be noted that if the assumed parameters are not achieved, demand is likely to exceed capacity at development completion; the additional demand cannot be accommodated by

www.wsp-opus.co.nz ©WSP OPUS | JUNE 2018 PAGE 39

bringing forward interventions. For example, a slower build rate will result in a later completion date and larger background traffic increase. Therefore, the same public transport mode share would not restrict demand below capacity at the time of completion.

These trigger points should be revisited and confirmed once more is known about construction phasing and the Transport Agency's requirements.

A general allowance of 2 years should be made for infrastructure to be in place to allow for further business cases as required, funding, design, planning/consenting, land acquisition, procurement and construction to be completed.

Table 12 Transport Intervention Triggers for Reference Case Only

		Build	Plan
Number of Dwellings (Year)	Prior to complete houses	Upgrade Howards Drive intersection to RAB Implement bus stops (detail in transport strategy) Build SH6 Underpass at Howards Drive Implement TDM Measures in Ladies Mile/Shotover Country	Design, consent future PnR Monitor traffic growth
	150 (2021)	Provide Ladies Mile bus at 60 minute frequency Provide Shotover Country/Lake Hayes bus at 10 minute frequency Provide bus priority on SH6	Monitor traffic growth
	300 (2022)		Monitor traffic growth Hold point at 450 dwellings if growth exceeds forecast
	450 (2023)	Increase Ladies Mile bus to 30 minute frequency Build park and ride Build westbound transit lanes on SH6	Monitor traffic growth
	600 (2024)	Park and Ride in place (100 spaces) with buses at 20 minute frequency Westbound transit lanes in place on SH6	Monitor traffic growth
	750 (2025)	Park and Ride in place (200 spaces) with buses at 10 minute frequency	Monitor traffic growth

8 Summary and Conclusions

This report has been prepared with the intention of supporting QLDC's business case for HIF funding towards lead transport infrastructure to enable housing development at the Ladies Mile site. The traffic impact of proposed development programmes has been assessed against the capacity of the SH6 corridor. Traffic modelling of existing and forecast conditions has informed a required package of integrated transport solutions, designed to encourage a sufficient uptake of alternative transport modes and supress traffic demand to below the corridor's capacity. The findings of the assessment can be summarised as follows:

www.wsp-opus.co.nz ©WSP OPUS | JUNE 2018 PAGE 40

- Traffic growth on SH6 is placing a significant strain on the already-busy corridor, with 2-year growth rates at 9.0%. With considerable development continuing in Frankton and the wider Queenstown area, growth rates are not expected to decrease significantly, other than in the event of economic downturn.
- The Ladies Mile site has significant accessibility challenges due to its' location, surrounding topography and limited connections to active modes and public transport. Car dependent development has prevailed in the past, as exemplified by Shotover County and Lake Hayes Estate; this is not sustainable into the future as there is very limited opportunity to increase highway capacity in an affordable way.
- Primary access is proposed to be directly onto SH6, which is the only regional highway
 to the east and north. The route is a lifeline for the Queenstown economy. As such, key
 stakeholders (such as NZ Transport Agency) require a level of operational efficiency and
 a safe environment to be maintained for all customers using the road.
- Recent surveys confirm that the pinch point in the network is in the vicinity of Shotover Bridge where the maximum traffic flow that can be accommodated in one hour is approximately 1,600 vehicles. The Transport Agency is not supportive of any scenarios that (in combination with background growth) result in peak traffic flows of more than 1,600 vehicles at this location.
- For each programme, a package of transport improvement measures have been identified with the intention of enabling the development to take place without breaching the capacity of the Shotover Bridge. These include concept designs for the immediate access points onto SH6, a range of Public Transport, walking and cycling and TDM improvements to encourage mode shift away from single occupancy car trips. Options for a Park and Ride site to capture westbound regional trips with associated bus priority measures on SH6, and the potential for re-routing some SH6 traffic via Arthurs Point have also been investigated.
- It is important to capitalise on the change opportunity when new residents first move into an area and establish their travel behaviour. Alternative travel choices should be available from the outset of the development.
- Junction analysis confirms that either roundabout or traffic signals would have capacity to cater for traffic demands at immediate access points for all proposed programmes. Therefore, it can be concluded that the highway capacity is the constraint, rather than the intersections. Traffic signals allow for more efficient pedestrian crossings, provide more control over traffic flow and allow priority to be maintained for SH6 traffic, while enabling bus priority measures at intersections to compliment the bus lanes. However, given the 80km/h speed environment, roundabouts provide higher capacity and offer a safer solution. For these reasons, NZ Transport Agency have indicated that they would not support traffic signals at the site.
- Based on a set of key assumptions, which have been sensitivity tested, traffic modelling indicates the following:
 - Programme 1 is forecast to generate 285 vehicles above capacity at completion.
 To keep peak hour flows at the bridge below 1,600 vehicles a mode shift of 15% and 25% is required at Ladies Mile and Lake Hayes/Shotover Country respectively.
 - Programme 2 is forecast to generate 508 vehicles above capacity at completion. To keep peak hour flows at the bridge below 1,600 vehicles a mode shift of 15% and 25% is required at Ladies Mile and Lake Hayes/Shotover Country respectively, in addition to a Park and Ride on SH6 with a turn in rate of 20%.
 - Programme 3 is forecast to generate 770 vehicles above capacity at completion. To keep peak hour flows at the bridge below 1,600 vehicles a mode shift of 40% and 40% is required at Ladies Mile and Lake Hayes/Shotover Country respectively, in addition to a Park and Ride on SH6 with a turn in rate of 20%. This would require a step change in transport infrastructure, including mass transit, an increase in highway capacity or a combination of the two.

WWW.wsp-opus.co.nz ©WSP OPUS | JUNE 2018 PAGE 41

- Programme 4 is forecast to generate 1,570 vehicles above capacity at completion.
 To keep peak hour flows at the bridge below 1,600 vehicles a mode shift of 50%
 and 50% is required at Ladies Mile and Lake Hayes/Shotover Country respectively,
 in addition to a Park and Ride on SH6 with a turn in rate of 40%. This would
 require a step change in transport infrastructure, including mass transit, an
 increase in highway capacity or a combination of the two.
- Economic analysis of the transport infrastructure indicates that a BCR of 2.17 can be achieved for Programme 1 and BCR of 2.75 can be achieved for Programme 2.
- Population density is considered to be too low to make MRT commercially viable at Ladies Mile. A single terminal would not provide for an sufficient catchment while multiple terminals would further increase cost. Rough order costing, provided by Doppelmayr, for an MRT solution (gondola from Ladies Mile to Frankton) put the costs in the region of \$80m to \$95m. Programmes 1 and 2 produce less than \$15m in transport benefits, indicating that the additional cost of an MRT solution would far outweigh the benefits provided.

www.wsp-opus.co.nz ©WSP OPUS | JUNE 2018 PAGE 42

9 Acknowledgements

This report has been prepared by Chris Baker - Transport Engineer of WSP Opus Queenstown Offices, with professional engineering and design support and supervision provided by the following WSP Opus Team of professionally qualified engineering design specialists:

- Reece Gibson Transportation Engineering Supervision
- Richard Hilliard Transportation Engineering Supervision QA/QC
- Tim Cuthbert Technical Executive Integrated Transport Planning Lead New Zealand
- Matthew Gatenby Principal Engineer Transportation, modelling
- Chris Morahan Transportation Engineering economic analysis
- Olivia Veltom Transport Planning, public transport
- Gabriel Surja Transportation Engineering economic analysis
- George Cheng Civil Concept Design Draughting
- Sharmin Choudhury Civil Concept Design Draughting
- Akaash Nanda Transportation Engineering, intersection modelling
- Asha Shaeffer Civil Engineering, traffic count assessments
- Liam Abott Civil Engineering, traffic count assessments
- Brandon Ducharme Project Management

www.wsp-opus.co.nz ©WSP OPUS | JUNE 2018 PAGE 43

10 Appendix A - Long List Options v1.0

TEMPLATE 1

Queenstown Lakes District Council Housing Infrastructure Fund - Ladies Mile Investor: QLDC
Facilitator: Tom Lucas
Initial Workshop: 12/12/2017
Version No.: 1
Last Modified by: Tom Lucas 12/12/2017

Programme Options

					Programn	ne Options		
Strategi	c Response		Programme 0	Programme 1	Programme 2	Programme 3	Programme 4	Programme 5
Strategic Alternatives	Strategic Options	Intervention options	Do Nothing	Do Minimum - 450 mixed lots on area D2 only (Stalker)	(Less ambitious?) - Programme 1 PLUS area B (Walker) PLUS 25ha at west end of D1	Programme 2 PLUS area A PLUS Henry's Land	Programme 3 Full Ladies Mile Master Plan (includes east end of D1 but excludes Area C)	BLAIR TO PROVIDE DWELLIN NUMERS FOR EACH OF THES PROGRAMMES
To increase the supply of	Road access to enable	Access to/from Spence paper road						
levelopable land	subdivision for new sections	Access to/from SH6		J	J	J	J	
		Access to/from SH6 AND local roads						
		Tee intersection on local road						
		Left In/Left Out entrance on SH6 (discounted for safety reasons)						
		Modify Stalker Rd roundabout for access						
		New roundabout on Sh6 at centre of development (existing tree lined driveway)		To be evaluated for proximity to Stalker Roundabout and loss of benefit from locating it at Howard Drive				
		New roundabout on SH6 at Howard Drive (or slightly relocated to avoid pet lodge)		J	J	J	J	
		Second access point on Lower Shotover Road				J	J	
		Second roundabout at east end of Ladies Mile					To be evaluated	
		Left in, travelling east on SH6 (only as an addition if Howard Drive roundabout installed)						
		Internal thru-roads (Developer cost)						
Improved Accessibility	Public transport	Bus stops internal to subdivision (Where? How many?)		QLDC/NZTA to confirm with ORC	QLDC/NZTA to confirm with DRC	QLDC/NZTA to confirm with DRC (although likely using collector bus as well as the exoress bus)	QLDC/NZTA to confirm with ORC (although likely using collector bus as well as the express bus)	
		One pair of Bus stops on SH6		J	J	√	√	
		Second pair of Bus stops on SH6						
		Location of bus stops at Stalker roundabout		QLDC/NZTA to confirm with ORC	QLDC/NZTA to confirm with ORC	QLDC/NZTA to confirm with ORC	QLDC/NZTA to confirm with ORC	
		Location of bus stops at Howards Drive roundabout		QLDC/NZTA to confirm with ORC	QLDC/NZTA to confirm with ORC	QLDC/NZTA to confirm with ORC	QLDC/NZTA to confirm with ORC	
		Park and ride facility adjacent to SH6, near bus stops	Already in NZTA 2018-2021 plan					
		Ladies Mile transport super-hub (parking, bike storage, shelter, etc)		QLDC/NZTA to confirm with ORC	QLDC/NZTA to confirm with ORC	QLDC/NZTA to confirm with ORC	QLDC/NZTA to confirm with ORC	
		Dedicated west-bound bus lane along SH6					NZTA to evaluate.	
	Active travel	Footbridge over Shotover River	Already in NZTA 2018-2021 plan					
		One SH6 underpass (EOI proposes Stalker roundabout location)		J	J	J	J	
		Location of underpass to suit bus stops		J	J	J	J	
		Second SH6 underpasses (Stalker Rd.)			Location to be evaluated	Location to be evaluated	Location to be evaluated	
		Second SH6 underpasses (Howards Drive)			Location to be evaluated	Location to be evaluated	Location to be evaluated	
		Second SH6 underpasses (Threepwood)			Location to be evaluated	Location to be evaluated	Location to be evaluated	
		Footpaths along SH6 (in setback reserve) to underpass and bus stops	Already in NZTA 2018-2021 plan	J	J	J	J	
		Footpaths along SH6 (in setback reserve) beyond underpass	Already in NZTA 2018-2021 plan					
	Note: the DBC should include tie-in with active travel links	Cycle paths along SH6 (in setback reserve)	Already in NZTA 2018-2021 plan					
	proposed by NZTA	Cycle paths to tie in with existing at Lake Hayes	Already in NZTA 2018-2021 plan					
		Cycle paths to tie in with existing at Lake Hayes Estate	Already in NZTA 2018-2021 plan					

TEMPLATE 1

Queenstown Lakes District Council Housing Infrastructure Fund - Ladies Mile

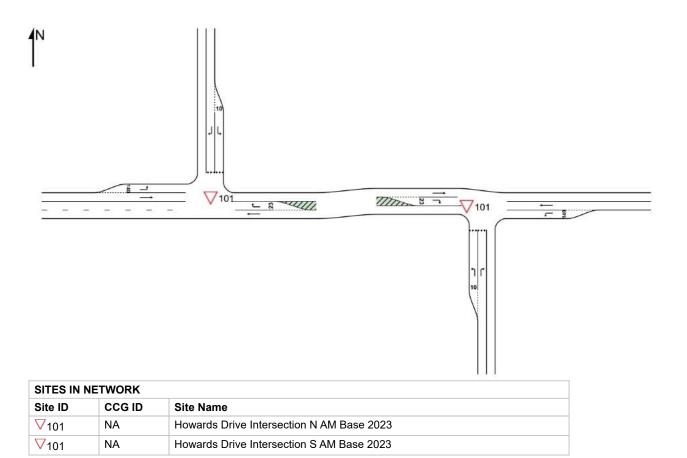
Investor: QLDC Facilitator: Tom Lucas Initial Workshop: 12/12/2017 Version No.: 1 Last Modified by: Tom Lucas 12/12/2017

Programme Options

					1 TOBTUILING	- Ортопо		
Strategic I	Response		Programme 0	Programme 1	Programme 2	Programme 3	Programme 4	Programme 5
Strategic Alternatives	Strategic Options	Intervention options	Do Nothing	Do Minimum - 450 mixed lots on area D2 only (Stalker)	(Less ambitious?) - Programme 1 PLUS area B (Walker) PLUS 25ha at west end of D1	Programme 2 PLUS area A PLUS Henry's Land	Programme 3 Full Ladies Mile Master Plan (includes east end of D1 but excludes Area C)	BLAIR TO PROVIDE DWELLIN NUMERS FOR EACH OF THES PROGRAMMES
Efficient infrastructure that	Water supply infrastructure	New dedicated stand-alone water source, treatment, storage and reticulation						
enables housing		Connect to existing watermain on SH6						
development		Connect to existing reticulation in Shotover Country/Lake Hayes Estate						
		Use existing rising main along Old School Road						
		New dedicated rising and falling mains from Shotover Country borefield				To be evaluated	To be evaluated	
		New rising/falling main from Shotover Country borefield		J	J	To be evaluated	To be evaluated	
		Expansion of Shotover Country borefield (beyond 26 MLD) - requires at least one new bore		J	J	J	J	
		Reservoir at Site 1 (Stalker land, including pipe route-CHECK)		J	J	J	J	
		Reservoir at Site 2 (Threepwood, including pipe route-CHECK)					To be evaluated	
		Allow storage capacity for Queenstown Country Club		J	J	J	J	
		Trunk mains within the site						
		UV and chlorination treatment at bore		J	J	J	J	
		Trunk main along SH6 to Howards Drive		J				
		Trunk main along SH6 beyond Howards Drive (east)			J	J	J	
		Trunk main along Howards Drive (south), tie-in to Lake Hayes Estate at Jones Ave treatment plant			J	√	J	
	Wastewater infrastructure	New wastewater treatment plant within development, with disposal to land or river (Shotover/Kawai	ırau)					
		Dedicated rising main to Shotover WwTP						
		Connection to existing gravity sewer at Stalker roundabout (exsiting tee been installed?)		J	J	J	J	
		Connection to existing rising main at Howards Drive roundabout (requires pump station by Develope	er)		J	J	J	
		Connection to existing gravity sewer at west end of Area A				J	J	
		Sewer trunk main along SH6 towards Howard Drive		T.B.C. (Ulrich)	f			
	Stormwater infrastructure	New pipeline to Shotover River (likely through the development, not SH6, but HIF funded only from b	boundary)			J	J	
		New pipeline to Lake Hayes (Creek?) in SH6 corridor			J	J	J	
		Cut-off drains at base of slope on north side of subdivision (developer cost)						
		On-site detention basins (developer cost)						
		Secondary overland flowpaths (Developer cost)			1			
		Connect from boundary to existing Queenstown Country Club stormwater main		J	J	J	J	
		Crossing beneath SH6		J	J	J	J	
		Internal reticulation (developer cost)						
		Check		0	0		0)

NOTES

- 1 The range of strategic alternatives/options that could respond to the identified problem and deliver the objectives for the expected benefits are listed in the left-hand columns.
- 2 Against the listed alternatives/options a spread of strategic programmes are structured to provide genuine alternative strategic responses to the problem.
- 3 Programmes should be titled to reflect the underlying strategy.
 4 This is a balance of two factors: the importance of the intervention in delivering the objective and the likely effort/cost involved.


11 Appendix B - Modelling and Scenario Analysis

Do Nothing Scenario

NETWORK LAYOUT

♦ Network: N101 [AM Base 2023]

New Network

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Created: Thursday, 28 June 2018 12:15:11 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 0 - Do Nothing\Do Nothing Howard Drive.sip7

igvee Site: 101 [Howards Drive Intersection N AM Base 2023]

New Site Giveway / Yield (Two-Way)

Movement Performance - Vehicles												
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h	
East: I	East: Ladies Mile E											
5	T1	1193	7.0	0.640	0.0	LOSA	0.0	0.0	0.00	0.00	79.5	
6	R2	21	0.0	0.028	5.8	LOS A	0.1	0.7	0.53	0.68	43.5	
Appro	ach	1214	6.9	0.640	0.1	NA	0.1	0.7	0.01	0.01	78.4	
North:	Access											
7	L2	27	0.0	0.036	7.3	LOSA	0.1	0.9	0.49	0.67	40.9	
9	R2	209	0.0	9.063	7314.7	LOS F	139.3	974.8	1.00	2.47	0.5	
Appro	ach	236	0.0	9.063	6478.7	LOS F	139.3	974.8	0.94	2.27	0.5	
West:	Ladies Mi	le W										
10	L2	60	0.0	0.032	6.9	LOSA	0.0	0.0	0.00	0.63	65.4	
11	T1	507	8.0	0.274	0.0	LOSA	0.0	0.0	0.00	0.00	79.9	
Appro	ach	567	7.2	0.274	0.8	NA	0.0	0.0	0.00	0.07	76.8	
All Vel	hicles	2017	6.2	9.063	758.3	NA	139.3	974.8	0.12	0.29	2.7	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:27:46 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 0 - Do Nothing\Do Nothing Howard Drive.sip7

 ∇ Site: 101 [Howards Drive Intersection N IP Base 2023]

New Site Giveway / Yield (Two-Way)

Move	Movement Performance - Vehicles												
Mov	OD	Demand I		Deg.	Average	Level of	95% Back		Prop.	Effective	Average		
ID	Mov	Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/h		
East: I	Ladies Mi		/0	V/C	300		VCII	- '''		per veri	KIII/II		
5	T1	924	7.0	0.495	0.0	LOSA	0.0	0.0	0.00	0.00	79.7		
6	R2	21	0.0	0.035	7.1	LOSA	0.1	0.9	0.59	0.75	42.2		
Appro	ach	945	6.8	0.495	0.2	NA	0.1	0.9	0.01	0.02	78.2		
North:	Access												
7	L2	22	0.0	0.035	8.2	LOS A	0.1	8.0	0.53	0.72	40.2		
9	R2	140	0.0	2.870	1746.5	LOS F	65.3	457.2	1.00	3.19	2.0		
Appro	ach	162	0.0	2.870	1510.4	LOS F	65.3	457.2	0.94	2.85	2.1		
West:	Ladies M	ile W											
10	L2	102	0.0	0.055	6.9	LOSA	0.0	0.0	0.00	0.63	65.4		
11	T1	608	8.0	0.328	0.0	LOSA	0.0	0.0	0.00	0.00	79.9		
Appro	ach	710	6.9	0.328	1.0	NA	0.0	0.0	0.00	0.09	75.8		
All Vel	hicles	1817	6.2	2.870	135.2	NA	65.3	457.2	0.09	0.30	12.9		

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:27:47 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 0 - Do Nothing\Do Nothing Howard Drive.sip7

igvee Site: 101 [Howards Drive Intersection N PM Base 2023]

New Site Giveway / Yield (Two-Way)

Movement Performance - Vehicles												
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h	
East: I	East: Ladies Mile E											
5	T1	861	7.0	0.462	0.0	LOSA	0.0	0.0	0.00	0.00	79.7	
6	R2	26	0.0	0.073	12.0	LOS B	0.2	1.7	0.77	0.89	38.2	
Appro	ach	887	6.8	0.462	0.4	NA	0.2	1.7	0.02	0.03	77.3	
North:	Access											
7	L2	22	0.0	0.054	11.7	LOS B	0.2	1.2	0.71	0.86	37.5	
9	R2	103	0.0	3.182	2050.7	LOS F	52.8	369.8	1.00	2.57	1.7	
Appro	ach	125	0.0	3.182	1691.8	LOS F	52.8	369.8	0.95	2.27	1.8	
West:	Ladies Mi	le W										
10	L2	166	0.0	0.089	7.0	LOS A	0.0	0.0	0.00	0.63	65.4	
11	T1	845	8.0	0.456	0.1	LOSA	0.0	0.0	0.00	0.00	79.7	
Appro	ach	1011	6.7	0.456	1.2	NA	0.0	0.0	0.00	0.10	75.3	
All Vel	hicles	2023	6.3	3.182	105.3	NA	52.8	369.8	0.07	0.20	15.7	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:27:48 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 0 - Do Nothing\Do Nothing Howard Drive.sip7

 ∇ Site: 101 [Howards Drive Intersection S AM Base 2023]

Giveway / Yield (Two-Way)

Move	Movement Performance - Vehicles												
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h		
South	South: Howards Drive												
1	L2	369	1.0	0.867	27.9	LOS D	7.8	55.0	0.94	1.61	28.5		
3	R2	55	7.0	0.891	161.8	LOS F	4.1	30.2	0.99	1.28	16.1		
Appro	ach	424	1.8	0.891	45.3	LOS E	7.8	55.0	0.95	1.57	24.4		
East: I	Ladies Mi	le E											
4	L2	58	10.0	0.033	7.1	LOSA	0.0	0.0	0.00	0.63	62.1		
5	T1	824	7.0	0.442	0.1	LOSA	0.0	0.0	0.00	0.00	79.8		
Appro	ach	882	7.2	0.442	0.5	NA	0.0	0.0	0.00	0.04	77.2		
West:	Ladies M	ile W											
11	T1	534	7.0	0.286	0.0	LOS A	0.0	0.0	0.00	0.00	79.9		
12	R2	107	3.0	0.254	11.5	LOS B	1.0	7.0	0.76	0.91	38.5		
Appro	ach	641	6.3	0.286	1.9	NA	1.0	7.0	0.13	0.15	67.7		
All Vel	hicles	1947	5.7	0.891	10.7	NA	7.8	55.0	0.25	0.41	50.0		

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:27:47 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 0 - Do Nothing\Do Nothing Howard Drive.sip7

 ∇ Site: 101 [Howards Drive Intersection S IP Base 2023]

New Site Giveway / Yield (Two-Way)

Movement Performance - Vehicles												
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h	
South	South: Howards Drive											
1	L2	259	1.0	0.450	11.5	LOS B	2.2	15.5	0.70	0.97	37.6	
3	R2	40	7.0	0.612	94.8	LOS F	2.1	15.5	0.97	1.08	22.8	
Appro	ach	299	1.8	0.612	22.7	LOS C	2.2	15.5	0.74	0.98	32.8	
East: I	Ladies Mile	e E										
4	L2	69	10.0	0.040	7.1	LOS A	0.0	0.0	0.00	0.63	62.1	
5	T1	665	7.0	0.357	0.0	LOSA	0.0	0.0	0.00	0.00	79.8	
Appro	ach	734	7.3	0.357	0.7	NA	0.0	0.0	0.00	0.06	76.3	
West:	Ladies Mi	le W										
11	T1	631	7.0	0.338	0.0	LOS A	0.0	0.0	0.00	0.00	79.8	
12	R2	214	3.0	0.383	10.0	LOS A	1.8	13.2	0.71	0.93	39.7	
Appro	ach	845	6.0	0.383	2.5	NA	1.8	13.2	0.18	0.23	63.6	
All Vel	hicles	1878	5.8	0.612	5.0	NA	2.2	15.5	0.20	0.28	58.2	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:27:48 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 0 - Do Nothing\Do Nothing Howard Drive.sip7

igvee Site: 101 [Howards Drive Intersection S PM Base 2023]

Giveway / Yield (Two-Way)

Move	ment Pe	rformance	- Vehic	les							
Mov	OD	Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	: Howards	veh/h	%	v/c	sec		veh	m		per veh	km/h
South											
1	L2	207	1.0	0.353	10.5	LOS B	1.5	10.8	0.66	0.90	38.4
3	R2	33	7.0	1.501	713.0	LOS F	11.2	83.0	1.00	1.60	4.4
Appro	ach	240	1.8	1.501	107.1	LOS F	11.2	83.0	0.71	1.00	13.8
East:	Ladies Mil	e E									
4	L2	95	10.0	0.055	7.1	LOS A	0.0	0.0	0.00	0.63	62.1
5	T1	654	7.0	0.351	0.0	LOS A	0.0	0.0	0.00	0.00	79.8
Appro	ach	749	7.4	0.351	0.9	NA	0.0	0.0	0.00	0.08	75.2
West:	Ladies Mi	le W									
11	T1	867	7.0	0.701	2.0	LOS A	6.2	45.8	0.65	0.00	73.9
12	R2	368	3.0	0.670	14.3	LOS B	4.8	34.3	0.83	1.12	36.4
Appro	ach	1235	5.8	0.701	5.7	NA	6.2	45.8	0.71	0.33	56.6
All Ve	hicles	2224	5.9	1.501	15.0	NA	11.2	83.0	0.47	0.32	44.6

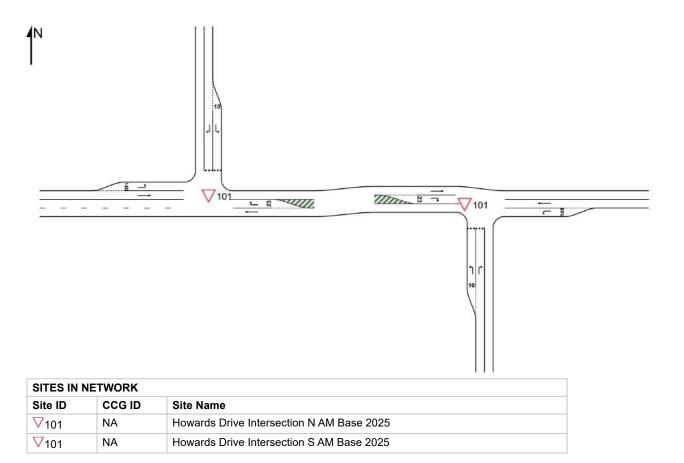
Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:27:49 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 0 - Do Nothing\Do Nothing Howard Drive.sip7

NETWORK LAYOUT

♦ Network: N101 [AM Base 2025]

New Network

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Created: Thursday, 28 June 2018 1:19:02 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 0 - Do Nothing\Do Nothing Howard Drive.sip7

V Site: 101 [Howards Drive Intersection N AM Base 2025]

Giveway / Yield (Two-Way)

Move	ement Pe	rformance	- Vehic	les							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
□ anti	l adiaa Mil	veh/h	%	v/c	sec		veh	m		per veh	km/h
East:	East: Ladies Mile E										
5	T1	1342	5.0	0.711	0.0	LOS A	0.0	0.0	0.00	0.00	79.3
6	R2	21	0.0	0.030	6.2	LOS A	0.1	0.8	0.55	0.70	43.1
Appro	ach	1363	4.9	0.711	0.1	NA	0.1	0.8	0.01	0.01	78.3
North	Access										
7	L2	27	0.0	0.039	7.6	LOS A	0.1	0.9	0.51	0.69	40.6
9	R2	209	0.0	19.637	16859.1	LOS F	170.8	1195.5	1.00	1.75	0.2
Appro	ach	236	0.0	19.637	14931.2	LOS F	170.8	1195.5	0.94	1.63	0.2
West:	Ladies Mi	ile W									
10	L2	60	0.0	0.032	6.9	LOS A	0.0	0.0	0.00	0.63	65.4
11	T1	549	8.0	0.296	0.0	LOS A	0.0	0.0	0.00	0.00	79.9
Appro	ach	609	7.2	0.296	0.7	NA	0.0	0.0	0.00	0.06	77.0
All Ve	hicles	2208	5.0	19.637	1596.2	NA	170.8	1195.5	0.11	0.20	1.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:27:49 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 0 - Do Nothing\Do Nothing Howard Drive.sip7

∇ Site: 101 [Howards Drive Intersection N IP Base 2025]

Giveway / Yield (Two-Way)

Move	ment Pe	rformance	- Vehic	les							
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Fast:	Ladies Mil	veh/h	%	v/c	sec		veh	m		per veh	km/h
		- =	- 0	0.547	0.0	1.00.4	0.0	0.0	0.00	0.00	70.0
5	T1	1033	5.0	0.547	0.0	LOS A	0.0	0.0	0.00	0.00	79.6
6	R2	21	0.0	0.038	7.7	LOS A	0.1	0.9	0.62	0.78	41.7
Appro	ach	1054	4.9	0.547	0.2	NA	0.1	0.9	0.01	0.02	78.2
North	Access										
7	L2	22	0.0	0.038	8.8	LOS A	0.1	0.9	0.57	0.75	39.7
9	R2	140	0.0	4.698	3397.6	LOS F	81.3	569.3	1.00	2.66	1.0
Appro	ach	162	0.0	4.698	2937.3	LOS F	81.3	569.3	0.94	2.40	1.1
West:	Ladies M	ile W									
10	L2	102	0.0	0.055	6.9	LOS A	0.0	0.0	0.00	0.63	65.4
11	T1	659	8.0	0.356	0.0	LOSA	0.0	0.0	0.00	0.00	79.8
Appro	ach	761	6.9	0.356	1.0	NA	0.0	0.0	0.00	0.08	76.0
All Ve	hicles	1977	5.3	4.698	241.2	NA	81.3	569.3	0.08	0.24	7.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:27:50 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 0 - Do Nothing\Do Nothing Howard Drive.sip7

igvee Site: 101 [Howards Drive Intersection N PM Base 2025]

Giveway / Yield (Two-Way)

Move	ment Pe	erformance	- Vehic	les							
Mov ID	OD Mov	Demand l Total	HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
East:	Ladies Mi	veh/h le E	%	v/c	sec		veh	m		per veh	km/h
5	T1	954	5.0	0.505	0.0	LOSA	0.0	0.0	0.00	0.00	79.7
6	R2	26	0.0	0.086	13.9	LOS B	0.3	1.9	0.80	0.91	36.8
Appro	ach	980	4.9	0.505	0.4	NA	0.3	1.9	0.02	0.02	77.3
North:	Access										
7	L2	22	0.0	0.063	13.3	LOS B	0.2	1.4	0.75	0.88	36.3
9	R2	103	0.0	5.248	3922.6	LOS F	65.5	458.3	1.00	2.15	0.9
Appro	ach	125	0.0	5.248	3234.6	LOS F	65.5	458.3	0.96	1.93	1.0
West:	Ladies M	lile W									
10	L2	166	0.0	0.089	7.0	LOSA	0.0	0.0	0.00	0.63	65.4
11	T1	916	8.0	0.494	0.1	LOSA	0.0	0.0	0.00	0.00	79.7
Appro	ach	1082	6.8	0.494	1.1	NA	0.0	0.0	0.00	0.10	75.5
All Ve	hicles	2187	5.5	5.248	185.6	NA	65.5	458.3	0.06	0.17	9.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:27:52 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 0 - Do Nothing\Do Nothing Howard Drive.sip7

∇ Site: 101 [Howards Drive Intersection S AM Base 2025]

Giveway / Yield (Two-Way)

Move	ment Pe	rformance	- Vehic	les							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South	Howards	Drive									
1	L2	450	1.0	1.228	232.2	LOS F	60.8	429.0	1.00	5.17	7.1
3	R2	66	7.0	1.584	660.0	LOS F	20.2	149.7	1.00	2.16	4.8
Appro	ach	516	1.8	1.584	286.9	LOS F	60.8	429.0	1.00	4.79	6.4
East: I	_adies Mil	e E									
4	L2	70	10.0	0.040	7.1	LOS A	0.0	0.0	0.00	0.63	62.1
5	T1	892	7.0	0.478	0.1	LOS A	0.0	0.0	0.00	0.00	79.7
Appro	ach	962	7.2	0.478	0.6	NA	0.0	0.0	0.00	0.05	76.9
West:	Ladies Mi	le W									
11	T1	575	7.0	0.308	0.0	LOS A	0.0	0.0	0.00	0.00	79.9
12	R2	131	3.0	0.366	14.7	LOS B	1.5	10.7	0.82	0.97	36.2
Appro	ach	706	6.3	0.366	2.7	NA	1.5	10.7	0.15	0.18	65.2
All Vel	nicles	2184	5.6	1.584	68.9	NA	60.8	429.0	0.29	1.21	20.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:27:50 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 0 - Do Nothing\Do Nothing Howard Drive.sip7

∇ Site: 101 [Howards Drive Intersection S IP Base 2025]

New Site Giveway / Yield (Two-Way)

Move	ment Pe	rformance	- Vehic	les							
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South	: Howards	Drive									
1	L2	314	1.0	0.600	14.4	LOS B	3.4	24.2	0.79	1.10	35.6
3	R2	48	7.0	1.073	294.4	LOS F	6.8	50.3	1.00	1.48	10.0
Appro	ach	362	1.8	1.073	51.5	LOS F	6.8	50.3	0.82	1.15	22.7
East: I	Ladies Mil	le E									
4	L2	82	10.0	0.047	7.1	LOSA	0.0	0.0	0.00	0.63	62.1
5	T1	719	7.0	0.385	0.1	LOSA	0.0	0.0	0.00	0.00	79.8
Appro	ach	801	7.3	0.385	0.8	NA	0.0	0.0	0.00	0.06	76.0
West:	Ladies M	ile W									
11	T1	681	7.0	0.560	1.2	LOS A	3.7	27.1	0.60	0.00	76.2
12	R2	255	3.0	0.512	12.7	LOS B	2.7	19.7	0.79	1.01	37.6
Appro	ach	936	5.9	0.560	4.3	NA	3.7	27.1	0.65	0.27	59.5
All Vel	hicles	2099	5.7	1.073	11.1	NA	6.8	50.3	0.43	0.34	49.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:27:51 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 0 - Do Nothing\Do Nothing Howard Drive.sip7

 ∇ Site: 101 [Howards Drive Intersection S PM Base 2025]

Giveway / Yield (Two-Way)

Move	ment Pe	rformance	- Vehic	les							
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South	: Howards	s Drive									
1	L2	248	1.0	0.462	12.3	LOS B	2.2	15.7	0.73	0.99	37.0
3	R2	42	7.0	3.475	2450.7	LOS F	27.3	202.7	1.00	1.66	1.3
Appro	ach	290	1.9	3.475	365.5	LOS F	27.3	202.7	0.77	1.08	5.0
East: I	Ladies Mi	le E									
4	L2	112	10.0	0.065	7.1	LOSA	0.0	0.0	0.00	0.63	62.1
5	T1	705	7.0	0.378	0.1	LOS A	0.0	0.0	0.00	0.00	79.8
Appro	ach	817	7.4	0.378	1.0	NA	0.0	0.0	0.00	0.09	74.9
West:	Ladies M	ile W									
11	T1	939	7.0	0.828	16.6	LOS C	20.5	151.9	0.79	0.00	47.5
12	R2	435	3.0	0.889	28.1	LOS D	10.6	76.0	0.94	1.54	29.0
Appro	ach	1374	5.7	0.889	20.2	NA	20.5	151.9	0.84	0.49	39.5
All Vel	hicles	2481	5.8	3.475	54.3	NA	27.3	202.7	0.55	0.42	23.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

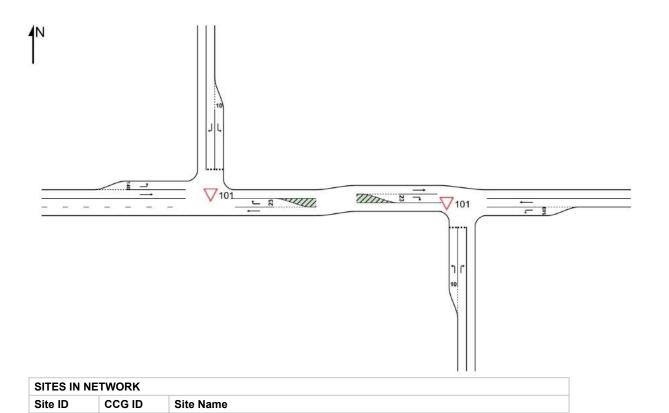
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:27:52 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 0 - Do Nothing\Do Nothing Howard Drive.sip7

NETWORK LAYOUT

♦ Network: N101 [AM Base 2028]


New Network

√101

∇101

NA

NA

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Created: Thursday, 28 June 2018 1:21:22 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 0 - Do Nothing\Do Nothing Howard Drive.sip7

Howards Drive Intersection N AM Base 2028

Howards Drive Intersection S AM Base 2028

igvee Site: 101 [Howards Drive Intersection N AM Base 2028]

Giveway / Yield (Two-Way)

Move	ment Pe	rformance	- Vehic	les							
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/h
East:	Ladies Mi		70	V/C	300		VCII	- '''		per veri	KITI/TI
5	T1	1489	5.0	0.788	0.0	LOS A	0.0	0.0	0.00	0.00	78.9
6	R2	30	0.0	0.049	7.1	LOS A	0.2	1.2	0.58	0.76	42.3
Appro	ach	1519	4.9	0.788	0.2	NA	0.2	1.2	0.01	0.02	77.6
North:	Access										
7	L2	38	0.0	0.060	8.3	LOS A	0.2	1.4	0.54	0.75	40.1
9	R2	297	0.0	49.500	43748.0	LOS F	291.9	2043.2	1.00	1.45	0.1
Appro	ach	335	0.0	49.500	38786.5	LOS F	291.9	2043.2	0.95	1.37	0.1
West:	Ladies M	ile W									
10	L2	85	0.0	0.046	6.9	LOSA	0.0	0.0	0.00	0.63	65.4
11	T1	611	8.0	0.330	0.0	LOS A	0.0	0.0	0.00	0.00	79.9
Appro	ach	696	7.0	0.330	0.9	NA	0.0	0.0	0.00	0.08	76.3
All Ve	hicles	2550	4.8	49.500	5095.8	NA	291.9	2043.2	0.13	0.21	0.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:27:53 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 0 - Do Nothing\Do Nothing Howard Drive.sip7

∇ Site: 101 [Howards Drive Intersection N IP Base 2028]

Giveway / Yield (Two-Way)

Move	ment Pe	rformance	- Vehic	les							
Mov	OD	Demand I		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/h
East:	Ladies Mi		70	V/ O			VOII			per veri	1311/11
5	T1	1147	5.0	0.607	0.0	LOSA	0.0	0.0	0.00	0.00	79.5
6	R2	30	0.0	0.066	9.5	LOS A	0.2	1.6	0.70	0.86	40.2
Appro	ach	1177	4.9	0.607	0.3	NA	0.2	1.6	0.02	0.02	77.6
North:	Access										
7	L2	31	0.0	0.061	9.8	LOS A	0.2	1.4	0.63	0.83	38.8
9	R2	200	0.0	14.314	12058.3	LOS F	151.2	1058.2	1.00	1.96	0.3
Appro	ach	231	0.0	14.314	10441.4	LOS F	151.2	1058.2	0.95	1.80	0.3
West:	Ladies M	ile W									
10	L2	144	0.0	0.078	7.0	LOSA	0.0	0.0	0.00	0.63	65.4
11	T1	735	8.0	0.397	0.1	LOSA	0.0	0.0	0.00	0.00	79.8
Appro	ach	879	6.7	0.397	1.2	NA	0.0	0.0	0.00	0.10	75.3
All Ve	hicles	2287	5.1	14.314	1055.2	NA	151.2	1058.2	0.11	0.23	2.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:27:54 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 0 - Do Nothing\Do Nothing Howard Drive.sip7

V Site: 101 [Howards Drive Intersection N PM Base 202□]

Giveway / Yield (Two-Way)

Move	ment Pe	rformance	- Vehic	les							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
_		veh/h	%	v/c	sec		veh	m		per veh	km/h
East:	Ladies Mil	e E									
5	T1	1060	5.0	0.561	0.0	LOS A	0.0	0.0	0.00	0.00	79.6
6	R2	37	0.0	0.180	20.5	LOS C	0.6	4.0	0.88	0.95	32.7
Appro	ach	1097	4.8	0.561	0.7	NA	0.6	4.0	0.03	0.03	75.9
North:	Access										
7	L2	32	0.0	0.121	16.9	LOS C	0.4	2.5	0.82	0.92	34.1
9	R2	147	0.0	17.818	15258.0	LOS F	128.7	900.7	1.00	1.59	0.2
Appro	ach	179	0.0	17.818	12533.3	LOS F	128.7	900.7	0.97	1.47	0.3
West:	Ladies Mi	ile W									
10	L2	236	0.0	0.127	7.0	LOSA	0.0	0.0	0.00	0.63	65.4
11	T1	1023	8.0	0.552	0.1	LOSA	0.0	0.0	0.00	0.00	79.6
Appro	ach	1259	6.5	0.552	1.4	NA	0.0	0.0	0.00	0.12	74.7
All Ve	hicles	2535	5.3	17.818	886.0	NA	128.7	900.7	0.08	0.18	2.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:27:55 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 0 - Do Nothing\Do Nothing Howard Drive.sip7

igvee Site: 101 [Howards Drive Intersection S AM Base 2028]

Giveway / Yield (Two-Way)

Move	ment Pe	rformance	- Vehic	les							
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South	: Howards	S Drive									
1	L2	490	1.0	1.743	688.6	LOS F	137.8	972.7	1.00	8.13	2.6
3	R2	71	7.0	3.181	2088.5	LOS F	38.8	287.8	1.00	2.14	1.6
Appro	ach	561	1.8	3.181	865.7	LOS F	137.8	972.7	1.00	7.37	2.3
East:	Ladies Mi	le E									
4	L2	74	10.0	0.043	7.1	LOSA	0.0	0.0	0.00	0.63	62.1
5	T1	999	7.0	0.536	0.1	LOSA	0.0	0.0	0.00	0.00	79.7
Appro	ach	1073	7.2	0.536	0.6	NA	0.0	0.0	0.00	0.04	77.0
West:	Ladies M	ile W									
11	T1	649	7.0	0.348	0.0	LOS A	0.0	0.0	0.00	0.00	79.8
12	R2	142	3.0	0.512	21.3	LOS C	2.2	15.6	0.89	1.03	32.2
Appro	ach	791	6.3	0.512	3.8	NA	2.2	15.6	0.16	0.19	63.1
All Ve	hicles	2425	5.6	3.181	201.8	NA	137.8	972.7	0.28	1.79	8.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:27:53 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 0 - Do Nothing\Do Nothing Howard Drive.sip7

∇ Site: 101 [Howards Drive Intersection S IP Base 2028]

Giveway / Yield (Two-Way)

Move	ment Pe	rformance	- Vehic	les							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
0 "		veh/h	%	v/c	sec		veh	m		per veh	km/h
South	: Howards	Drive									
1	L2	341	1.0	0.772	21.0	LOS C	5.4	38.1	0.90	1.34	31.7
3	R2	52	7.0	2.015	1077.5	LOS F	22.0	163.0	1.00	1.98	3.0
Appro	ach	393	1.8	2.015	160.8	LOS F	22.0	163.0	0.91	1.43	10.2
East: I	Ladies Mil	e E									
4	L2	86	10.0	0.050	7.1	LOS A	0.0	0.0	0.00	0.63	62.1
5	T1	806	7.0	0.432	0.1	LOS A	0.0	0.0	0.00	0.00	79.8
Appro	ach	892	7.3	0.432	0.7	NA	0.0	0.0	0.00	0.06	76.1
West:	Ladies Mi	le W									
11	T1	766	7.0	0.679	2.4	LOS A	6.1	45.1	0.72	0.00	72.9
12	R2	274	3.0	0.654	17.7	LOS C	3.9	27.8	0.87	1.11	34.3
Appro	ach	1040	5.9	0.679	6.4	NA	6.1	45.1	0.76	0.29	56.2
All Vel	hicles	2325	5.8	2.015	30.3	NA	22.0	163.0	0.49	0.40	32.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:27:54 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 0 - Do Nothing\Do Nothing Howard Drive.sip7

V Site: 101 [Howards Drive Intersection S PM Base 2028]

Giveway / Yield (Two-Way)

Move	ment Pe	rformance	- Vehic	les							
Mov	OD	Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	: Howards	veh/h	%	v/c	sec		veh	m		per veh	km/h
South											
1	L2	268	1.0	0.590	15.9	LOS C	3.1	21.8	0.82	1.10	34.7
3	R2	46	7.0	7.667	6276.8	LOS F	42.7	316.6	1.00	1.41	0.5
Appro	ach	314	1.9	7.667	933.1	LOS F	42.7	316.6	0.85	1.15	2.1
East:	Ladies Mil	e E									
4	L2	117	10.0	0.067	7.1	LOS A	0.0	0.0	0.00	0.63	62.1
5	T1	792	7.0	0.425	0.1	LOS A	0.0	0.0	0.00	0.00	79.8
Appro	ach	909	7.4	0.425	1.0	NA	0.0	0.0	0.00	0.08	75.1
West:	Ladies Mi	le W									
11	T1	1054	7.0	1.103	124.5	LOS F	99.2	735.7	1.00	0.00	12.9
12	R2	466	3.0	1.133	152.1	LOS F	45.8	328.5	1.00	3.23	10.1
Appro	ach	1520	5.8	1.133	132.9	NA	99.2	735.7	1.00	0.99	11.9
All Ve	hicles	2743	5.9	7.667	180.8	NA	99.2	735.7	0.65	0.71	9.3

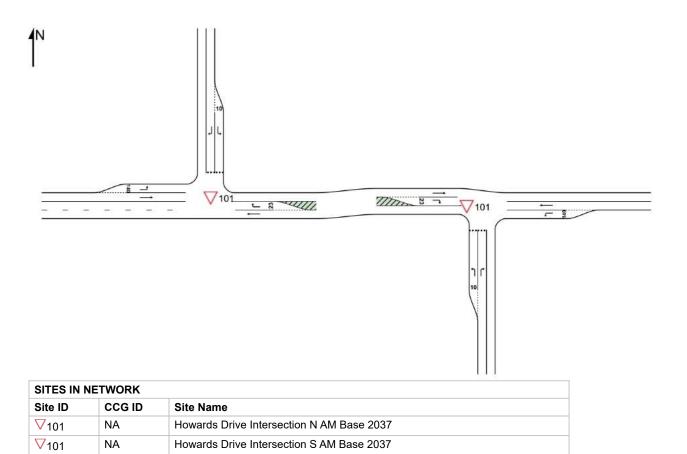
Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:27:56 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 0 - Do Nothing\Do Nothing Howard Drive.sip7

NETWORK LAYOUT

♦ Network: N101 [AM Base 2037]

New Network

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Created: Thursday, 28 June 2018 1:21:37 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 0 - Do Nothing\Do Nothing Howard Drive.sip7

igvee Site: 101 [Howards Drive Intersection N AM Base 2037]

Giveway / Yield (Two-Way)

Move	ement Pe	rformance	- Vehic	les							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Foot	Ladies Mil	veh/h	%	v/c	sec		veh	m		per veh	km/h
5	T1	2190	5.0	1.160	5.5	LOS A	0.0	0.0	0.00	0.00	19.0
6	R2	33	0.0	0.083	10.8	LOS B	0.3	1.9	0.74	0.88	39.1
Appro	ach	2223	4.9	1.160	5.6	NA	0.3	1.9	0.01	0.01	19.1
North	Access										
7	L2	41	0.0	0.099	11.8	LOS B	0.3	2.2	0.71	0.86	37.4
9	R2	330	0.0	55.000	48652.5	LOS F	295.0	2065.3	1.00	1.53	0.1
Appro	ach	371	0.0	55.000	43277.1	LOS F	295.0	2065.3	0.97	1.46	0.1
West:	Ladies Mi	le W									
10	L2	94	0.0	0.051	6.9	LOS A	0.0	0.0	0.00	0.63	65.4
11	T1	840	8.0	0.453	0.1	LOS A	0.0	0.0	0.00	0.00	79.8
Appro	ach	934	7.2	0.453	0.8	NA	0.0	0.0	0.00	0.06	76.8
All Ve	hicles	3528	5.0	55.000	4554.7	NA	295.0	2065.3	0.11	0.18	0.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:27:56 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 0 - Do Nothing\Do Nothing Howard Drive.sip7

∇ Site: 101 [Howards Drive Intersection N IP Base 2037]

Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
East: Ladies Mile E											
5	T1	1663	5.0	0.881	0.0	LOS A	0.0	0.0	0.00	0.00	77.9
6	R2	33	0.0	0.131	16.6	LOS C	0.4	2.9	0.85	0.93	35.0
Approach		1696	4.9	0.881	0.4	NA	0.4	2.9	0.02	0.02	76.1
North: Access											
7	L2	35	0.0	0.124	16.0	LOS C	0.4	2.6	0.81	0.91	34.6
9	R2	222	0.0	37.000	32488.4	LOS F	208.1	1456.8	1.00	1.48	0.1
Approach		257	0.0	37.000	28066.1	LOS F	208.1	1456.8	0.97	1.40	0.1
West: Ladies Mile W											
10	L2	160	0.0	0.086	7.0	LOS A	0.0	0.0	0.00	0.63	65.4
11	T1	998	8.0	0.538	0.1	LOS A	0.0	0.0	0.00	0.00	79.6
Approach		1158	6.9	0.538	1.0	NA	0.0	0.0	0.00	0.09	75.8
All Vehicles		3111	5.2	37.000	2319.1	NA	208.1	1456.8	0.09	0.16	0.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:27:57 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 0 - Do Nothing\Do Nothing Howard Drive.sip7

igvee Site: 101 [Howards Drive Intersection N PM Base 2037]

Giveway / Yield (Two-Way)

Move	ment Pe	rformance	- Vehic	les							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
	l' NA''	veh/h	%	v/c	sec		veh	m		per veh	km/h
East:	Ladies Mil	le E									
5	T1	1506	5.0	0.797	0.0	LOS A	0.0	0.0	0.00	0.00	78.9
6	R2	42	0.0	0.732	123.0	LOS F	2.4	16.8	0.99	1.07	12.0
Appro	ach	1548	4.9	0.797	3.4	NA	2.4	16.8	0.03	0.03	68.5
North:	Access										
7	L2	35	0.0	0.506	72.3	LOS F	1.4	10.1	0.97	1.04	17.3
9	R2	163	0.0	27.167	23651.5	LOS F	151.4	1059.5	1.00	1.48	0.2
Appro	ach	198	0.0	27.167	19483.4	LOS F	151.4	1059.5	1.00	1.40	0.2
West:	Ladies M	ile W									
10	L2	262	0.0	0.141	7.0	LOSA	0.0	0.0	0.00	0.63	65.4
11	T1	1377	8.0	0.743	0.3	LOS A	0.0	0.0	0.00	0.00	79.1
Appro	ach	1639	6.7	0.743	1.3	NA	0.0	0.0	0.00	0.10	75.0
All Ve	hicles	3385	5.5	27.167	1141.8	NA	151.4	1059.5	0.07	0.14	1.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:27:59 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 0 - Do Nothing\Do Nothing Howard Drive.sip7

V Site: 101 [Howards Drive Intersection S AM Base 2037]

New Site Giveway / Yield (Two-Way)

Move	Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Average													
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h			
South	: Howards	Drive												
1	L2	501	1.0	76.214	67763.3	LOS F	473.0	3339.0	1.00	1.51	0.0			
3	R2	72	7.0	12.000	10056.5	LOS F	64.8	480.9	1.00	1.47	0.3			
Appro	ach	573	1.8	76.214	60512.2	LOS F	473.0	3339.0	1.00	1.51	0.0			
East: I	Ladies Mil	e E												
4	L2	75	10.0	0.043	7.1	LOSA	0.0	0.0	0.00	0.63	62.1			
5	T1	1689	7.0	0.906	8.0	LOSA	0.0	0.0	0.00	0.00	77.3			
Appro	ach	1764	7.1	0.906	1.1	NA	0.0	0.0	0.00	0.03	75.8			
West:	Ladies Mi	le W												
11	T1	882	7.0	7.776	6603.5	LOS F	710.0	5268.3	1.00	0.00	0.3			
12	R2	145	3.0	10.353	8506.7	LOS F	106.0	761.4	1.00	1.66	0.2			
Appro	ach	1027	6.4	10.353	6872.2	NA	710.0	5268.3	1.00	0.24	0.3			
All Vel	hicles	3364	6.0	76.214	12405.8	NA	710.0	5268.3	0.48	0.34	0.2			

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:27:57 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 0 - Do Nothing\Do Nothing Howard Drive.sip7

∇ Site: 101 [Howards Drive Intersection S IP Base 2037]

Giveway / Yield (Two-Way)

Move	ment Pe	rformance	- Vehic	les							
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South	: Howards	S Drive									
1	L2	349	1.0	3.709	2463.3	LOS F	169.3	1195.5	1.00	5.72	0.8
3	R2	54	7.0	9.000	7411.2	LOS F	48.9	363.1	1.00	1.44	0.5
Appro	ach	403	1.8	9.000	3126.3	LOS F	169.3	1195.5	1.00	5.14	0.7
East: I	Ladies Mi	le E									
4	L2	87	10.0	0.050	7.1	LOSA	0.0	0.0	0.00	0.63	62.1
5	T1	1315	7.0	0.705	0.2	LOS A	0.0	0.0	0.00	0.00	79.3
Appro	ach	1402	7.2	0.705	0.6	NA	0.0	0.0	0.00	0.04	76.9
West:	Ladies M	ile W									
11	T1	1032	7.0	2.273	1204.9	LOS F	419.4	3111.9	1.00	0.00	1.5
12	R2	279	3.0	2.731	1589.0	LOS F	118.7	852.5	1.00	4.00	1.2
Appro	ach	1311	6.1	2.731	1286.7	NA	419.4	3111.9	1.00	0.85	1.4
All Vel	hicles	3116	6.1	9.000	946.0	NA	419.4	3111.9	0.55	1.04	2.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:27:58 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 0 - Do Nothing\Do Nothing Howard Drive.sip7

V Site: 101 [Howards Drive Intersection S PM Base 2037]

New Site Giveway / Yield (Two-Way)

Move	Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Average													
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h			
South	: Howards	Drive												
1	L2	273	1.0	2.059	984.4	LOS F	94.2	665.3	1.00	5.56	1.9			
3	R2	47	7.0	7.833	6351.0	LOS F	41.0	304.2	1.00	1.45	0.5			
Appro	ach	320	1.9	7.833	1772.6	LOS F	94.2	665.3	1.00	4.96	1.2			
East:	Ladies Mil	e E												
4	L2	119	10.0	0.069	7.1	LOS A	0.0	0.0	0.00	0.63	62.1			
5	T1	1233	7.0	0.661	0.2	LOSA	0.0	0.0	0.00	0.00	79.4			
Appro	ach	1352	7.3	0.661	0.8	NA	0.0	0.0	0.00	0.06	76.1			
West:	Ladies Mi	le W												
11	T1	1412	7.0	2.863	1705.0	LOS F	620.8	4606.2	1.00	0.00	1.1			
12	R2	476	3.0	3.679	2430.4	LOS F	227.7	1634.7	1.00	5.22	8.0			
Appro	ach	1888	6.0	3.679	1887.9	NA	620.8	4606.2	1.00	1.32	1.0			
All Ve	hicles	3560	6.1	7.833	1160.8	NA	620.8	4606.2	0.62	1.16	1.7			

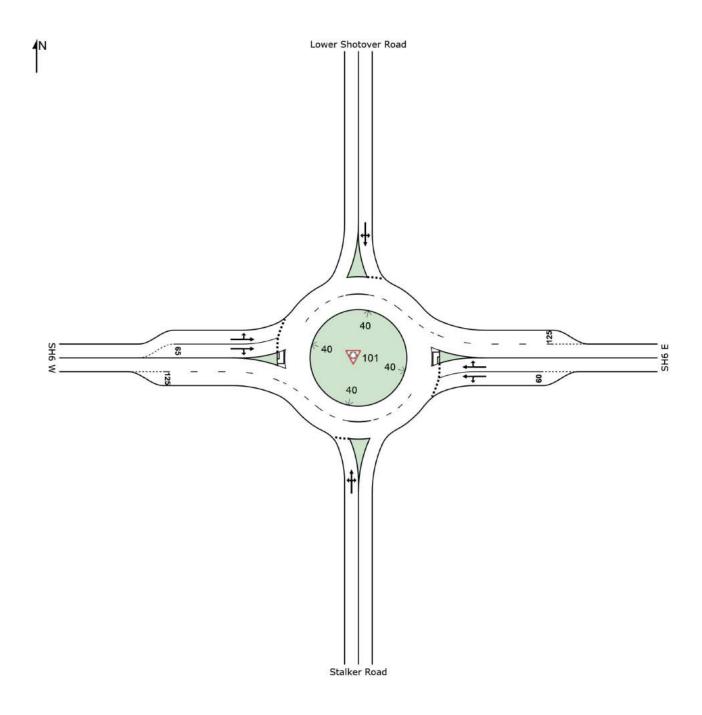
Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:27:45 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 0 - Do Nothing\Do Nothing Howard Drive.sip7

Site: 101 [Stalker Road/SH6 AM Roundabout Existing 2023]

Roundabout

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Created: Thursday, 28 June 2018 1:25:24 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 0 - Do Nothing\Do Nothing Stalker Road 25062018.sip7

Site: 101 [Stalker Road/SH6 AM Roundabout Existing 2023]

New Site Roundabout

Mov													
ID	Mov		HV		Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed		
South	: Stalker F	veh/h	%	v/c	sec		veh	m		per veh	km/h		
1	L2	398	2.0	1.811	379.6	LOS F	75.5	536.4	1.00	3.84	8.3		
2	 T1	27	0.0	1.811	379.0	LOS F	75.5	536.4	1.00	3.84	8.4		
3	R2	42	0.0	1.811	385.2	LOS F	75.5	536.4	1.00	3.84	8.4		
Appro	ach	467	1.7	1.811	380.1	LOS F	75.5	536.4	1.00	3.84	8.3		
East:	SH6 E												
4	L2	31	5.0	0.811	15.2	LOS B	12.6	91.7	0.96	0.97	50.5		
5	T1	1337	5.0	0.892	18.1	LOS B	18.5	134.8	0.98	1.03	57.6		
6	R2	34	5.0	0.892	27.3	LOS B	18.5	134.8	1.00	1.08	50.1		
Appro	ach	1402	5.0	0.892	18.3	LOS B	18.5	134.8	0.98	1.03	57.3		
North	: Lower Sh	notover Road	l										
7	L2	21	5.0	0.222	7.9	LOSA	1.0	7.1	0.59	0.82	60.0		
8	T1	18	0.0	0.222	8.2	LOSA	1.0	7.1	0.59	0.82	54.2		
9	R2	150	5.0	0.222	15.3	LOS B	1.0	7.1	0.59	0.82	62.0		
Appro	ach	189	4.5	0.222	13.8	LOSA	1.0	7.1	0.59	0.82	61.0		
West:	SH6 W												
10	L2	198	8.0	0.269	5.7	LOS A	1.8	13.4	0.26	0.46	56.7		
11	T1	612	8.0	0.296	5.9	LOSA	2.1	15.6	0.25	0.48	67.3		
12	R2	113	5.0	0.296	12.7	LOS A	2.1	15.6	0.25	0.49	59.8		
Appro	ach	923	7.6	0.296	6.7	LOS A	2.1	15.6	0.25	0.48	63.8		
All Ve	hicles	2981	5.3	1.811	71.1	LOS F	75.5	536.4	0.73	1.29	30.7		

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:37:18 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 0 - Do Nothing\Do Nothing Stalker Road 25062018.sip7

Site: 101 [Stalker Road/SH6 IP Roundabout Existing 2023]

New Site Roundabout

Move	ement Pe	rformance	- Vehic	les							
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total veh/h	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	: Stalker F		%	v/c	sec		veh	m		per veh	km/h
1	L2	259	2.0	0.491	7.7	LOSA	3.0	21.3	0.81	0.94	52.4
2	T1	20	0.0	0.491	7.1	LOSA	3.0	21.3	0.81	0.94	54.4
3	R2	40	0.0	0.491	13.3	LOSA	3.0	21.3	0.81	0.94	54.5
Appro	ach	319	1.6	0.491	8.4	LOS A	3.0	21.3	0.81	0.94	52.8
East:	SH6 E										
4	L2	22	5.0	0.367	7.1	LOSA	2.5	18.2	0.59	0.59	54.8
5	T1	1005	5.0	0.403	7.2	LOS A	3.0	22.2	0.58	0.57	66.1
6	R2	38	5.0	0.403	13.9	LOSA	3.0	22.2	0.57	0.56	58.5
Appro	ach	1065	5.0	0.403	7.4	LOSA	3.0	22.2	0.58	0.57	65.6
North	: Lower Sh	notover Road									
7	L2	26	5.0	0.287	9.1	LOS A	1.4	9.8	0.69	0.88	59.4
8	T1	35	0.0	0.287	9.4	LOS A	1.4	9.8	0.69	0.88	53.7
9	R2	148	5.0	0.287	16.5	LOS B	1.4	9.8	0.69	0.88	61.4
Appro	ach	209	4.2	0.287	14.4	LOS A	1.4	9.8	0.69	0.88	59.7
West:	SH6 W										
10	L2	172	8.0	0.354	5.8	LOSA	2.5	19.0	0.33	0.47	56.3
11	T1	858	8.0	0.389	6.1	LOSA	3.0	22.4	0.32	0.49	66.8
12	R2	163	5.0	0.389	12.9	LOSA	3.0	22.4	0.31	0.51	59.3
Appro	ach	1193	7.6	0.389	7.0	LOS A	3.0	22.4	0.32	0.49	64.0
All Ve	hicles	2786	5.7	0.491	7.9	LOSA	3.0	22.4	0.50	0.60	62.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:37:17 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 0 - Do Nothing\Do Nothing Stalker Road 25062018.sip7

Site: 101 [Stalker Road/SH6 PM Roundabout Existing 2023]

New Site Roundabout

Move	ement Pe	rformance	- Vehic	les							
Mov	OD	Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	: Stalker F	veh/h	%	v/c	sec		veh	m		per veh	km/h
1	L2	177	2.0	0.371	6.3	LOSA	2.0	14.3	0.77	0.86	53.1
	T1										
2		17	0.0	0.371	5.7	LOSA	2.0	14.3	0.77	0.86	55.1
3	R2	47	0.0	0.371	11.9	LOSA	2.0	14.3	0.77	0.86	55.3
Appro	ach	241	1.5	0.371	7.3	LOS A	2.0	14.3	0.77	0.86	53.7
East:	SH6 E										
4	L2	18	5.0	0.368	8.0	LOS A	2.6	18.8	0.69	0.66	54.2
5	T1	897	5.0	0.405	7.9	LOS A	3.2	23.6	0.69	0.63	65.2
6	R2	50	5.0	0.405	14.5	LOS B	3.2	23.6	0.68	0.62	57.7
Appro	ach	965	5.0	0.405	8.3	LOSA	3.2	23.6	0.69	0.63	64.5
North	: Lower Sh	notover Road									
7	L2	38	5.0	0.529	15.5	LOS B	3.4	24.8	0.87	1.03	54.5
8	T1	60	0.0	0.529	15.7	LOS B	3.4	24.8	0.87	1.03	49.7
9	R2	178	5.0	0.529	22.9	LOS B	3.4	24.8	0.87	1.03	56.2
Appro	ach	276	3.9	0.529	20.3	LOS B	3.4	24.8	0.87	1.03	54.4
West:	SH6 W										
10	L2	184	8.0	0.518	6.1	LOS A	4.4	33.3	0.43	0.49	55.7
11	T1	1294	8.0	0.569	6.3	LOS A	5.4	39.8	0.42	0.51	66.1
12	R2	248	5.0	0.569	13.1	LOSA	5.4	39.8	0.41	0.52	58.7
Appro	ach	1726	7.6	0.569	7.3	LOS A	5.4	39.8	0.42	0.51	63.7
All Ve	hicles	3208	6.0	0.569	8.7	LOSA	5.4	39.8	0.56	0.62	62.1

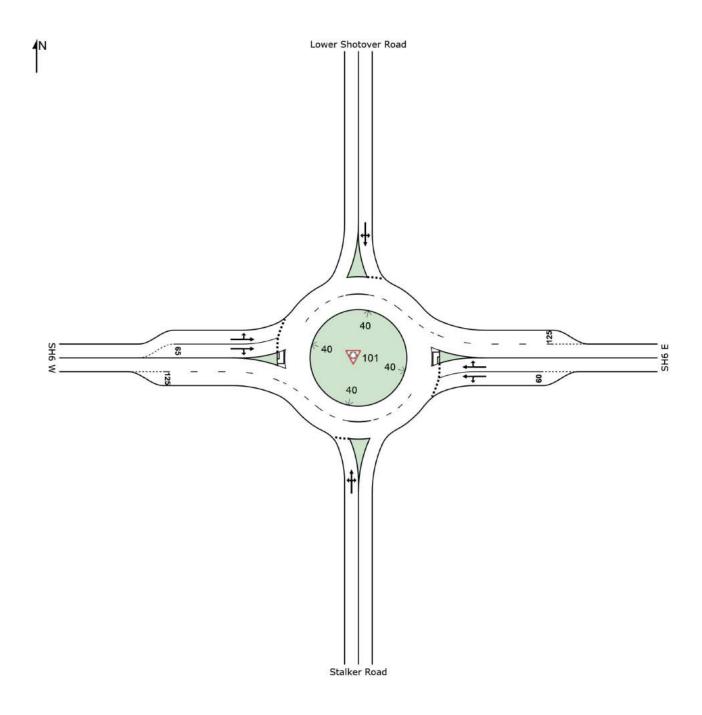
Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:37:19 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 0 - Do Nothing\Do Nothing Stalker Road 25062018.sip7

Site: 101 [Stalker Road/SH6 AM Roundabout Existing 2025]

Roundabout

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Created: Thursday, 28 June 2018 1:27:51 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 0 - Do Nothing\Do Nothing Stalker Road 25062018.sip7

Site: 101 [Stalker Road/SH6 AM Roundabout Existing 2025]

New Site Roundabout

Move	ement Pe	rformance	- Vehic	les							
Mov	OD	Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	ı: Stalker F	veh/h	%	v/c	sec		veh	m		per veh	km/h
1	L2	480	2.0	2.458	668.2	LOS F	116.6	827.9	1.00	4.33	5.0
2	T1	28	0.0	2.458	667.6	LOS F	116.6	827.9	1.00	4.33	5.1
3	R2	52	0.0	2.458	673.7	LOS F	116.6	827.9	1.00	4.33	5.1
Appro	ach	560	1.7	2.458	668.7	LOS F	116.6	827.9	1.00	4.33	5.0
East:	SH6 E										
4	L2	41	5.0	0.926	25.2	LOS B	21.6	157.4	1.00	1.20	44.7
5	T1	1473	5.0	1.018	35.2	LOS C	35.7	260.3	1.00	1.35	45.8
6	R2	37	5.0	1.018	50.7	LOS D	35.7	260.3	1.00	1.48	38.3
Appro	ach	1551	5.0	1.018	35.3	LOS C	35.7	260.3	1.00	1.35	45.6
North	: Lower Sh	notover Road									
7	L2	21	5.0	0.239	8.2	LOSA	1.1	7.8	0.61	0.85	59.8
8	T1	20	0.0	0.239	8.5	LOSA	1.1	7.8	0.61	0.85	54.0
9	R2	155	5.0	0.239	15.6	LOS B	1.1	7.8	0.61	0.85	61.8
Appro	ach	196	4.5	0.239	14.1	LOSA	1.1	7.8	0.61	0.85	60.7
West:	SH6 W										
10	L2	215	8.0	0.296	5.7	LOSA	2.0	15.3	0.27	0.46	56.7
11	T1	666	8.0	0.325	5.9	LOSA	2.4	17.8	0.25	0.48	67.2
12	R2	137	5.0	0.325	12.7	LOSA	2.4	17.8	0.25	0.49	59.6
Appro	ach	1018	7.6	0.325	6.8	LOS A	2.4	17.8	0.26	0.48	63.7
All Ve	hicles	3325	5.2	2.458	132.0	LOS F	116.6	827.9	0.75	1.55	20.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:37:20 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 0 - Do Nothing\Do Nothing Stalker Road 25062018.sip7

Site: 101 [Stalker Road/SH6 IP Roundabout Existing 2025]

New Site Roundabout

Move	ement Pe	rformance	- Vehic	les							
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	: Stalker F	veh/h	%	v/c	sec		veh	m		per veh	km/h
			2.0	0.646	40.0	1004	4.7	22.7	0.00	1.00	F0 0
1	L2	314	2.0	0.646	10.8	LOSA	4.7	33.7	0.89	1.06	50.2
2	T1	21	0.0	0.646	10.2	LOSA	4.7	33.7	0.89	1.06	52.0
3	R2	49	0.0	0.646	16.4	LOS B	4.7	33.7	0.89	1.06	52.1
Appro	ach	384	1.6	0.646	11.5	LOSA	4.7	33.7	0.89	1.06	50.5
East:	SH6 E										
4	L2	31	5.0	0.416	7.5	LOS A	2.9	21.5	0.64	0.62	54.5
5	T1	1101	5.0	0.458	7.5	LOS A	3.6	26.6	0.63	0.60	65.7
6	R2	41	5.0	0.458	14.2	LOS A	3.6	26.6	0.63	0.58	58.1
Appro	ach	1173	5.0	0.458	7.8	LOSA	3.6	26.6	0.63	0.60	65.0
North	: Lower Sh	notover Road									
7	L2	26	5.0	0.325	9.9	LOS A	1.6	11.7	0.74	0.91	58.8
8	T1	38	0.0	0.325	10.1	LOS A	1.6	11.7	0.74	0.91	53.2
9	R2	153	5.0	0.325	17.2	LOS B	1.6	11.7	0.74	0.91	60.8
Appro	ach	217	4.1	0.325	15.1	LOS B	1.6	11.7	0.74	0.91	59.1
West:	SH6 W										
10	L2	187	8.0	0.399	6.0	LOS A	3.0	22.8	0.38	0.48	56.1
11	T1	940	8.0	0.439	6.2	LOS A	3.6	27.0	0.37	0.50	66.4
12	R2	202	5.0	0.439	12.9	LOS A	3.6	27.0	0.36	0.52	58.9
Appro	ach	1329	7.5	0.439	7.2	LOSA	3.6	27.0	0.37	0.50	63.5
All Ve	hicles	3103	5.6	0.646	8.5	LOSA	4.7	33.7	0.56	0.64	61.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:37:20 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 0 - Do Nothing\Do Nothing Stalker Road 25062018.sip7

Site: 101 [Stalker Road/SH6 PM Roundabout Existing 2025]

New Site Roundabout

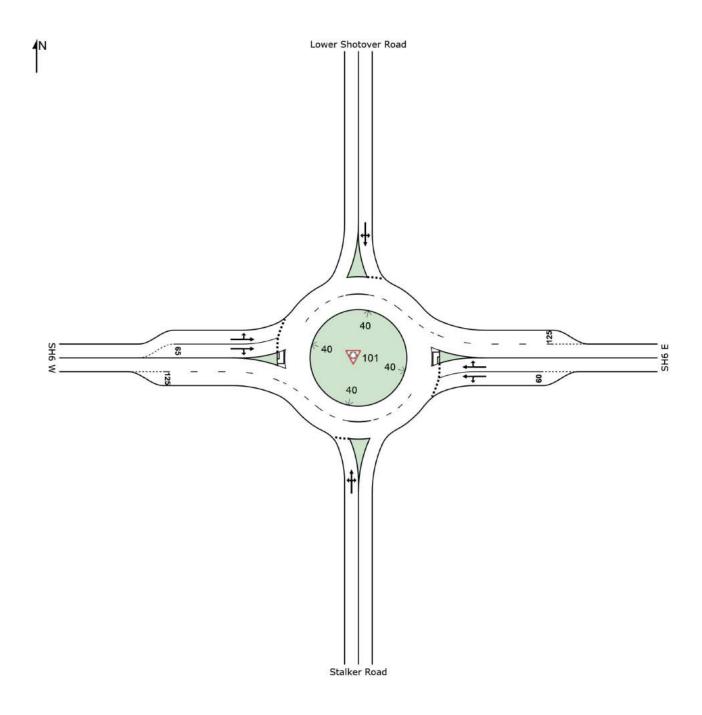
Move	ement Pe	rformance	- Vehic	les							
Mov	OD	Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	: Stalker F	veh/h	%	v/c	sec		veh	m		per veh	km/h
1	L2	217	2.0	0.489	8.0	LOSA	3.1	21.7	0.84	0.96	51.9
2	T1	18	0.0	0.489	7.4	LOSA	3.1	21.7	0.84	0.96	53.8
3	R2	56	0.0	0.489	13.6	LOSA	3.1	21.7	0.84	0.96	54.0
Appro	ach	291	1.5	0.489	9.0	LOSA	3.1	21.7	0.84	0.96	52.4
East:	SH6 E										
4	L2	28	5.0	0.426	8.7	LOS A	3.1	22.7	0.76	0.71	53.9
5	T1	975	5.0	0.468	8.5	LOS A	4.0	29.0	0.76	0.68	64.6
6	R2	54	5.0	0.468	15.1	LOS B	4.0	29.0	0.76	0.66	57.2
Appro	ach	1057	5.0	0.468	8.9	LOSA	4.0	29.0	0.76	0.68	63.9
North	: Lower Sh	notover Road									
7	L2	38	5.0	0.665	23.0	LOS B	5.1	36.9	0.94	1.13	49.4
8	T1	65	0.0	0.665	23.2	LOS B	5.1	36.9	0.94	1.13	45.4
9	R2	184	5.0	0.665	30.4	LOS C	5.1	36.9	0.94	1.13	50.8
Appro	ach	287	3.9	0.665	27.8	LOS B	5.1	36.9	0.94	1.13	49.2
West:	SH6 W										
10	L2	200	8.0	0.587	6.3	LOS A	5.6	41.8	0.50	0.51	55.3
11	T1	1424	8.0	0.645	6.5	LOS A	6.8	50.8	0.49	0.53	65.5
12	R2	311	5.0	0.645	13.2	LOS A	6.8	50.8	0.48	0.54	58.2
Appro		1935	7.5	0.645	7.6	LOSA	6.8	50.8	0.49	0.53	63.0
All Ve	hicles	3570	6.0	0.665	9.7	LOSA	6.8	50.8	0.64	0.66	60.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.


Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:37:21 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 0 - Do Nothing\Do Nothing Stalker Road 25062018.sip7

Site: 101 [Stalker Road/SH6 AM Roundabout Existing 2028]

Roundabout

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Created: Thursday, 28 June 2018 1:29:23 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 0 - Do Nothing\Do Nothing Stalker Road 25062018.sip7

Site: 101 [Stalker Road/SH6 AM Roundabout Existing 2028]

New Site Roundabout

Move	ement Pe	rformance	- Vehic	les							
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South	: Stalker F	Road									
1	L2	515	2.0	2.720	785.4	LOS F	132.5	941.1	1.00	4.46	4.3
2	T1	30	0.0	2.720	784.8	LOS F	132.5	941.1	1.00	4.46	4.4
3	R2	56	0.0	2.720	791.0	LOS F	132.5	941.1	1.00	4.46	4.4
Appro	ach	601	1.7	2.720	785.9	LOS F	132.5	941.1	1.00	4.46	4.3
East:	SH6 E										
4	L2	44	5.0	1.070	59.8	LOS E	44.8	326.8	1.00	1.73	31.6
5	T1	1700	5.0	1.176	81.4	LOS F	68.6	500.5	1.00	2.00	29.3
6	R2	41	5.0	1.176	107.3	LOS F	68.6	500.5	1.00	2.23	24.3
Appro	ach	1785	5.0	1.176	81.5	LOS F	68.6	500.5	1.00	1.99	29.2
North	: Lower Sh	notover Road									
7	L2	21	5.0	0.254	8.6	LOS A	1.2	8.5	0.65	0.87	59.4
8	T1	22	0.0	0.254	9.0	LOSA	1.2	8.5	0.65	0.87	53.7
9	R2	155	5.0	0.254	16.0	LOS B	1.2	8.5	0.65	0.87	61.4
Appro	ach	198	4.4	0.254	14.5	LOS A	1.2	8.5	0.65	0.87	60.2
West:	SH6 W										
10	L2	241	8.0	0.333	5.7	LOSA	2.4	17.9	0.27	0.46	56.7
11	T1	760	8.0	0.366	5.9	LOSA	2.8	21.0	0.26	0.48	67.2
12	R2	147	5.0	0.366	12.7	LOSA	2.8	21.0	0.25	0.49	59.7
Appro	ach	1148	7.6	0.366	6.7	LOS A	2.8	21.0	0.26	0.48	63.7
All Ve	hicles	3732	5.2	2.720	168.4	LOS F	132.5	941.1	0.75	1.87	17.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:37:22 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 0 - Do Nothing\Do Nothing Stalker Road 25062018.sip7

Site: 101 [Stalker Road/SH6 IP Roundabout Existing 2028]

New Site Roundabout

Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Average												
D	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed	
outh: 9	Stalker	veh/h	%	v/c	sec		veh	m		per veh	km/h	
			0.0	0.704	47.0	1 00 D	7.0	54.0	0.05	4.04	45.0	
	L2	337	2.0	0.794	17.8	LOS B	7.2	51.3	0.95	1.24	45.9	
	T1	22	0.0	0.794	17.1	LOS B	7.2	51.3	0.95	1.24	47.4	
	R2	52	0.0	0.794	23.3	LOS B	7.2	51.3	0.95	1.24	47.5	
pproac	ch	411	1.6	0.794	18.5	LOS B	7.2	51.3	0.95	1.24	46.2	
ast: SI	H6 E											
	L2	33	5.0	0.485	7.9	LOS A	3.6	26.6	0.70	0.65	54.2	
	T1	1266	5.0	0.533	7.8	LOS A	4.6	33.3	0.69	0.62	65.2	
	R2	46	5.0	0.533	14.5	LOS A	4.6	33.3	0.69	0.60	57.8	
6 R2 Approach		1345	5.0	0.533	8.1	LOSA	4.6	33.3	0.69	0.62	64.6	
lorth: L	ower S	hotover Road	d									
	L2	26	5.0	0.370	11.3	LOS A	2.0	14.5	0.79	0.95	57.8	
	T1	43	0.0	0.370	11.5	LOS A	2.0	14.5	0.79	0.95	52.3	
	R2	153	5.0	0.370	18.7	LOS B	2.0	14.5	0.79	0.95	59.6	
pproac	ch	222	4.0	0.370	16.4	LOS B	2.0	14.5	0.79	0.95	57.9	
Vest: S	SH6 W											
0	L2	210	8.0	0.455	6.1	LOS A	3.7	27.8	0.42	0.50	55.8	
1	T1	1074	8.0	0.500	6.3	LOS A	4.5	33.3	0.41	0.51	66.1	
2	R2	219	5.0	0.500	13.0	LOS A	4.5	33.3	0.40	0.52	58.7	
pproac	ch	1503	7.6	0.500	7.2	LOSA	4.5	33.3	0.41	0.51	63.3	
II Vehi	icles	3481	5.6	0.794	9.5	LOSA	7.2	51.3	0.61	0.67	60.8	
pproad	ch	1503	7.6	0.500	7.2	LOSA	4.5	33.3	0.41		0.51	

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:37:23 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 0 - Do Nothing\Do Nothing Stalker Road 25062018.sip7

Site: 101 [Stalker Road/SH6 PM Roundabout Existing 2028]

New Site Roundabout

Move	ement Pe	rformance	- Vehic	les							
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South	: Stalker F	Road									
1	L2	234	2.0	0.602	10.8	LOSA	4.2	30.0	0.91	1.05	50.0
2	T1	19	0.0	0.602	10.2	LOSA	4.2	30.0	0.91	1.05	51.7
3	R2	60	0.0	0.602	16.4	LOS B	4.2	30.0	0.91	1.05	51.9
Appro	ach	313	1.5	0.602	11.9	LOSA	4.2	30.0	0.91	1.05	50.4
East:	SH6 E										
4	L2	33	5.0	0.502	9.8	LOSA	4.2	30.8	0.82	0.82	53.6
5	T1	1114	5.0	0.552	9.5	LOS A	5.4	39.5	0.82	0.78	64.1
6	R2	60	5.0	0.552	16.0	LOS B	5.4	39.5	0.83	0.74	56.8
Appro	ach	1207	5.0	0.552	9.8	LOSA	5.4	39.5	0.82	0.77	63.4
North	: Lower Sh	notover Road									
7	L2	38	5.0	0.905	56.9	LOS E	10.7	77.3	1.00	1.40	34.5
8	T1	73	0.0	0.905	56.9	LOS E	10.7	77.3	1.00	1.40	32.5
9	R2	184	5.0	0.905	64.3	LOS E	10.7	77.3	1.00	1.40	35.2
Appro	ach	295	3.8	0.905	61.5	LOS E	10.7	77.3	1.00	1.40	34.4
West:	SH6 W										
10	L2	225	8.0	0.671	6.6	LOS A	7.3	54.5	0.60	0.54	54.9
11	T1	1627	8.0	0.737	6.8	LOS A	9.6	71.4	0.59	0.54	64.9
12	R2	339	5.0	0.737	13.5	LOSA	9.6	71.4	0.58	0.55	57.7
Appro	ach	2191	7.5	0.737	7.8	LOSA	9.6	71.4	0.59	0.54	62.5
All Ve	hicles	4006	6.0	0.905	12.7	LOSA	10.7	77.3	0.71	0.72	58.1

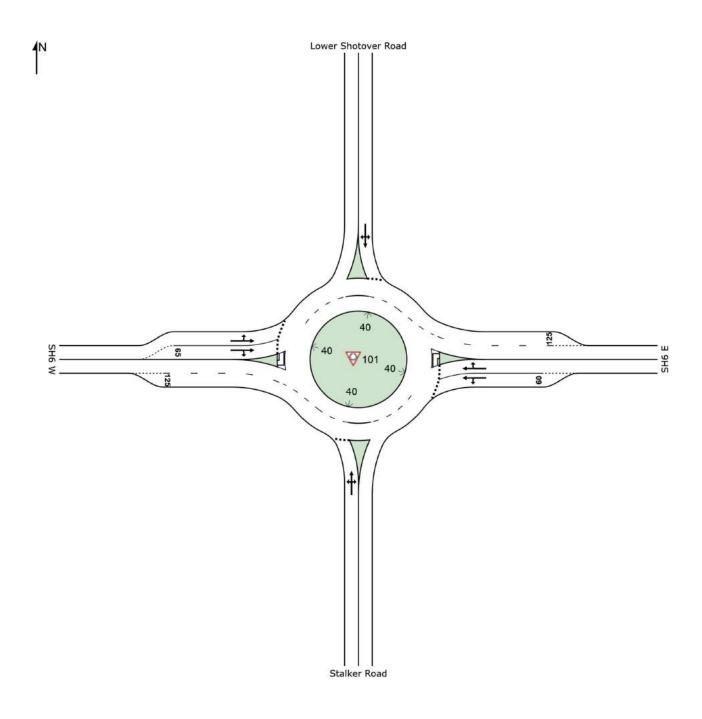
Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:37:23 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 0 - Do Nothing\Do Nothing Stalker Road 25062018.sip7

Site: 101 [Stalker Road/SH6 AM Roundabout Existing 2028]

Roundabout

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Created: Thursday, 28 June 2018 1:29:23 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 0 - Do Nothing\Do Nothing Stalker Road 25062018.sip7

Site: 101 [Stalker Road/SH6 AM Roundabout Existing 2037]

New Site Roundabout

Move	ement Pe	rformance	- Vehic	les							
Mov	OD	Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	ı: Stalker F	veh/h	%	v/c	sec		veh	m		per veh	km/h
	L2	524	2.0	2.616	738.5	LOS F	132.4	940.3	1.00	4.58	4.6
1											
2	T1	34	0.0	2.616	737.9	LOS F	132.4	940.3	1.00	4.58	4.6
3	R2	58	0.0	2.616	744.1	LOS F	132.4	940.3	1.00	4.58	4.6
Appro	ach	616	1.7	2.616	739.0	LOS F	132.4	940.3	1.00	4.58	4.6
East:	SH6 E										
4	L2	45	5.0	1.654	308.7	LOS F	169.3	1235.9	1.00	4.00	10.2
5	T1	2412	5.0	1.818	347.3	LOS F	209.0	1525.8	1.00	4.21	9.6
6	R2	45	5.0	1.818	388.4	LOS F	209.0	1525.8	1.00	4.40	8.7
Appro	ach	2502	5.0	1.818	347.3	LOS F	209.0	1525.8	1.00	4.21	9.6
North	: Lower Sh	notover Road									
7	L2	31	5.0	0.437	11.5	LOSA	2.5	18.5	0.78	0.97	57.0
8	T1	30	0.0	0.437	11.7	LOSA	2.5	18.5	0.78	0.97	51.8
9	R2	234	5.0	0.437	18.8	LOS B	2.5	18.5	0.78	0.97	58.9
Appro	ach	295	4.5	0.437	17.3	LOS B	2.5	18.5	0.78	0.97	57.9
West:	SH6 W										
10	L2	343	8.0	0.429	5.7	LOSA	3.5	26.5	0.29	0.46	56.6
11	T1	991	8.0	0.472	5.9	LOSA	4.2	31.4	0.28	0.47	67.3
12	R2	150	5.0	0.472	12.8	LOS A	4.2	31.4	0.28	0.47	59.8
Appro		1484	7.7	0.472	6.6	LOSA	4.2	31.4	0.28	0.47	63.7
All Ve	hicles	4897	5.4	2.616	273.4	LOS F	209.0	1525.8	0.77	2.93	11.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:37:24 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 0 - Do Nothing\Do Nothing Stalker Road 25062018.sip7

Site: 101 [Stalker Road/SH6 IP Roundabout Existing 2037]

New Site Roundabout

Move	ement Pe	rformance	- Vehic	les							
Mov	OD	Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	ı: Stalker F	veh/h	%	v/c	sec		veh	m		per veh	km/h
			2.0	4 045	120.4	1005	24.0	247.2	1.00	2.00	10.1
1	L2	343	2.0	1.215	130.4	LOS F	34.8	247.3	1.00	2.60	19.1
2	T1	25	0.0	1.215	129.7	LOS F	34.8	247.3	1.00	2.60	19.3
3	R2	53	0.0	1.215	135.9	LOS F	34.8	247.3	1.00	2.60	19.3
Appro	ach	421	1.6	1.215	131.0	LOS F	34.8	247.3	1.00	2.60	19.1
East:	SH6 E										
4	L2	35	5.0	0.647	10.6	LOSA	7.1	51.8	0.86	0.87	53.3
5	T1	1586	5.0	0.711	10.5	LOSA	9.5	69.3	0.86	0.84	63.9
6	R2	55	5.0	0.711	17.1	LOS B	9.5	69.3	0.86	0.82	56.6
Appro	ach	1676	5.0	0.711	10.7	LOS A	9.5	69.3	0.86	0.84	63.3
North	: Lower Sh	notover Road									
7	L2	35	5.0	0.632	20.1	LOS B	4.8	34.5	0.92	1.10	51.1
8	T1	57	0.0	0.632	20.3	LOS B	4.8	34.5	0.92	1.10	46.8
9	R2	206	5.0	0.632	27.5	LOS B	4.8	34.5	0.92	1.10	52.6
Appro	ach	298	4.0	0.632	25.2	LOS B	4.8	34.5	0.92	1.10	51.2
West:	SH6 W										
10	L2	317	8.0	0.571	6.2	LOSA	5.4	40.4	0.48	0.51	55.5
11	T1	1349	8.0	0.628	6.4	LOSA	6.6	49.1	0.47	0.51	65.8
12	R2	223	5.0	0.628	13.2	LOSA	6.6	49.1	0.46	0.52	58.6
Appro	ach	1889	7.6	0.628	7.2	LOS A	6.6	49.1	0.47	0.51	63.0
All Ve	hicles	4284	5.8	1.215	22.0	LOS B	34.8	247.3	0.71	0.89	51.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:37:25 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 0 - Do Nothing\Do Nothing Stalker Road 25062018.sip7

Site: 101 [Stalker Road/SH6 PM Roundabout Existing 2037]

New Site Roundabout

Move	ement Pe	rformance	- Vehic	les							
Mov	OD	Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	: Stalker F	veh/h	%	v/c	sec		veh	m		per veh	km/h
1	L2	239	2.0	0.852	27.8	LOS B	8.1	57.1	1.00	1.33	40.8
2	T1	21	0.0	0.852	27.1	LOS B	8.1	57.1	1.00	1.33	41.9
3	R2	61	0.0	0.852	33.3	LOS C	8.1	57.1	1.00	1.33	42.0
Appro	ach	321	1.5	0.852	28.8	LOS C	8.1	57.1	1.00	1.33	41.1
East:	SH6 E										
4	L2	34	5.0	0.653	10.6	LOS A	7.3	53.4	0.87	0.87	53.2
5	T1	1545	5.0	0.717	10.5	LOS A	9.8	71.7	0.88	0.85	63.6
6	R2	90	5.0	0.717	17.0	LOS B	9.8	71.7	0.89	0.83	56.4
Appro	ach	1669	5.0	0.717	10.8	LOSA	9.8	71.7	0.88	0.85	62.9
North	: Lower Sh	notover Road									
7	L2	46	5.0	2.440	686.0	LOS F	80.6	582.1	1.00	2.46	5.1
8	T1	97	0.0	2.440	686.0	LOS F	80.6	582.1	1.00	2.46	5.1
9	R2	223	5.0	2.440	693.4	LOS F	80.6	582.1	1.00	2.46	5.1
Appro	ach	366	3.7	2.440	690.5	LOS F	80.6	582.1	1.00	2.46	5.1
West:	SH6 W										
10	L2	361	8.0	0.850	9.1	LOS A	15.1	113.1	0.90	0.67	53.4
11	T1	2008	8.0	0.934	9.5	LOS A	25.5	189.5	0.88	0.65	62.8
12	R2	346	5.0	0.934	16.4	LOS B	25.5	189.5	0.87	0.64	56.1
Appro	ach	2715	7.6	0.934	10.3	LOS A	25.5	189.5	0.88	0.65	60.4
All Ve	hicles	5071	6.1	2.440	60.8	LOS E	80.6	582.1	0.90	0.89	33.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

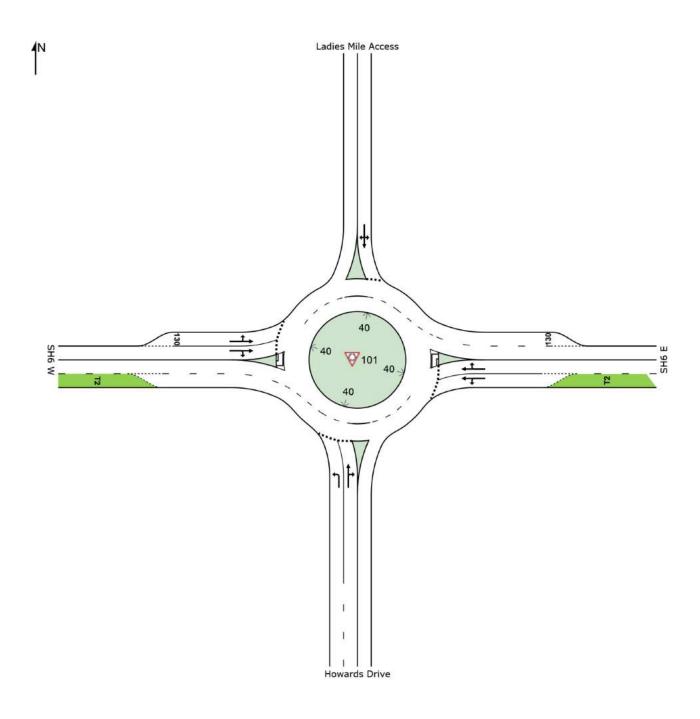
Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:37:25 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 0 - Do Nothing\Do Nothing Stalker Road 25062018.sip7


11 Appendix B - Modelling and Scenario Analysis

Do Something Scenario

Site: 101 [Howards Drive/SH6 AM Roundabout 2023]

Roundabout

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Created: Thursday, 28 June 2018 1:30:27 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 1 - Do Something\Do Something Howards Drive.sip7

Site: 101 [Howards Drive/SH6 AM Roundabout 2023]

New Site Roundabout

Move	ement Pe	rformance	- Vehic	les							
Mov	OD	Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
O - v th		veh/h	%	v/c	sec		veh	m		per veh	km/h
	: Howards		4.0	0.005				40.0	2 72	2.07	-10
1	L2	277	1.0	0.285	4.7	LOSA	1.5	10.8	0.70	0.67	54.8
2	T1	1	0.0	0.090	4.8	LOS A	0.4	2.8	0.65	0.81	45.9
3	R2	55	7.0	0.090	11.3	LOS A	0.4	2.8	0.65	0.81	51.0
Appro	ach	333	2.0	0.285	5.8	LOSA	1.5	10.8	0.69	0.69	54.1
East:	SH6 E										
4	L2	58	10.0	0.319	6.9	LOS A	2.0	16.3	0.52	0.58	55.2
5	T1	824	7.0	0.340	6.9	LOS A	2.4	16.7	0.50	0.55	68.2
6	R2	21	0.0	0.340	13.5	LOS A	2.4	16.7	0.49	0.53	59.1
Appro	ach	903	7.0	0.340	7.1	LOSA	2.4	16.7	0.50	0.55	66.9
North	: Ladies M	ile Access									
7	L2	27	0.0	0.217	4.0	LOS A	0.9	6.5	0.54	0.74	52.0
8	T1	1	0.0	0.217	3.4	LOS A	0.9	6.5	0.54	0.74	46.9
9	R2	178	0.0	0.217	9.6	LOS A	0.9	6.5	0.54	0.74	53.6
Appro	ach	206	0.0	0.217	8.8	LOS A	0.9	6.5	0.54	0.74	53.3
West:	SH6 W										
10	L2	60	0.0	0.205	5.5	LOS A	1.3	9.3	0.26	0.45	56.7
11	T1	507	8.0	0.218	5.9	LOS A	1.4	10.4	0.25	0.48	67.3
12	R2	107	3.0	0.218	12.7	LOS A	1.4	10.4	0.24	0.51	59.5
Appro		674	6.5	0.218	7.0	LOSA	1.4	10.4	0.25	0.48	64.8
All Ve	hicles	2116	5.4	0.340	7.0	LOSA	2.4	16.7	0.45	0.57	62.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:43:05 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 1 - Do Something\Do Something Howards Drive.sip7

Site: 101 [Howards Drive/SH6 IP Roundabout 2023]

New Site Roundabout

Move	ment Pe	rformance		les							
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	: Howards	veh/h	%	v/c	sec		veh	m		per veh	km/h
			4.0	0.000	4.0	1004	4.0	7.4	0.00	0.57	55.0
1	L2	218	1.0	0.203	4.0	LOSA	1.0	7.1	0.60	0.57	55.2
2	T1	1	0.0	0.061	4.2	LOS A	0.2	1.8	0.59	0.75	46.3
3	R2	40	7.0	0.061	10.6	LOS A	0.2	1.8	0.59	0.75	51.5
Appro	ach	259	1.9	0.203	5.0	LOS A	1.0	7.1	0.60	0.60	54.5
East:	SH6 E										
4	L2	69	10.0	0.267	6.9	LOS A	1.6	12.8	0.50	0.58	55.3
5	T1	665	7.0	0.285	6.9	LOS A	1.9	13.0	0.48	0.55	68.4
6	R2	21	0.0	0.285	13.5	LOS A	1.9	13.0	0.47	0.53	59.3
Approach		755	7.1	0.285	7.1	LOSA	1.9	13.0	0.48	0.55	66.7
North:	Ladies M	lile Access									
7	L2	22	0.0	0.167	4.3	LOS A	0.7	4.9	0.57	0.76	52.0
8	T1	1	0.0	0.167	3.8	LOS A	0.7	4.9	0.57	0.76	46.9
9	R2	126	0.0	0.167	9.9	LOS A	0.7	4.9	0.57	0.76	53.6
Appro	ach	149	0.0	0.167	9.1	LOS A	0.7	4.9	0.57	0.76	53.3
West:	SH6 W										
10	L2	90	0.0	0.260	5.5	LOS A	1.7	12.2	0.23	0.44	56.9
11	T1	608	8.0	0.277	5.9	LOS A	1.8	13.6	0.22	0.49	67.2
12	R2	173	3.0	0.277	12.7	LOSA	1.8	13.6	0.22	0.53	59.2
Appro	ach	871	6.2	0.277	7.2	LOS A	1.8	13.6	0.22	0.49	64.3
All Vel	hicles	2034	5.5	0.285	7.0	LOSA	1.9	13.6	0.39	0.55	62.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:43:11 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 1 - Do Something\Do Something Howards Drive.sip7

Site: 101 [Howards Drive/SH6 PM Roudabout 2023]

New Site Roundabout

Move	ement Pe	rformance	- Vehic	les							
Mov	OD	Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Courth	: Howards	veh/h	%	v/c	sec		veh	m		per veh	km/h
			1.0	0.404	2.0	1004	1.0	6.0	0.00	0.50	55.0
1	L2	207	1.0	0.194	3.9	LOSA	1.0	6.8	0.60	0.56	55.2
2	T1	1	0.0	0.051	4.1	LOSA	0.2	1.5	0.59	0.74	46.4
3	R2	33	7.0	0.051	10.5	LOS A	0.2	1.5	0.59	0.74	51.6
Appro	ach	241	1.8	0.194	4.8	LOSA	1.0	6.8	0.60	0.58	54.6
East:	SH6 E										
4	L2	95	10.0	0.290	7.4	LOS A	1.7	14.0	0.56	0.62	55.1
5	T1	654	7.0	0.305	7.3	LOS A	2.0	14.2	0.54	0.58	67.9
6	R2	26	0.0	0.305	13.8	LOS A	2.0	14.2	0.53	0.56	58.8
Appro	ach	775	7.1	0.305	7.5	LOS A	2.0	14.2	0.54	0.59	65.7
North	: Ladies M	lile Access									
7	L2	22	0.0	0.164	5.4	LOS A	0.7	5.1	0.65	0.83	51.5
8	T1	1	0.0	0.164	4.8	LOS A	0.7	5.1	0.65	0.83	46.5
9	R2	103	0.0	0.164	11.0	LOS A	0.7	5.1	0.65	0.83	53.1
Appro	ach	126	0.0	0.164	10.0	LOS A	0.7	5.1	0.65	0.83	52.8
West:	SH6 W										
10	L2	141	0.0	0.374	5.5	LOS A	2.7	19.7	0.26	0.45	56.8
11	T1	845	8.0	0.399	5.9	LOS A	3.0	22.0	0.25	0.49	66.9
12	R2	276	3.0	0.399	12.7	LOS A	3.0	22.0	0.24	0.53	58.9
Appro	ach	1262	6.0	0.399	7.4	LOSA	3.0	22.0	0.24	0.50	63.8
All Ve	hicles	2404	5.6	0.399	7.3	LOSA	3.0	22.0	0.40	0.55	62.6

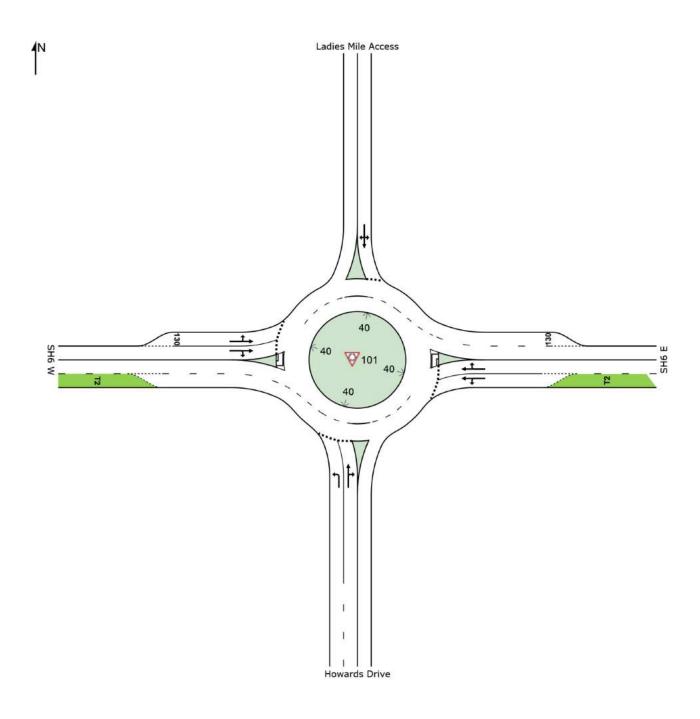
Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:43:11 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 1 - Do Something\Do Something Howards Drive.sip7

Site: 101 [Howards Drive/SH6 AM Roundabout 2025]

Roundabout

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Created: Thursday, 28 June 2018 1:30:51 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 1 - Do Something\Do Something Howards Drive.sip7

Site: 101 [Howards Drive/SH6 AM Roundabout 2025]

New Site Roundabout

Move	ement Pe	rformance	- Vehic	les							
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	: Howards	veh/h	%	v/c	sec		veh	m		per veh	km/h
	L2	345	1.0	0.336	4.5	LOSA	1.8	12.9	0.68	0.64	54.9
1											
2	T1	1	0.0	0.103	4.5	LOSA	0.4	3.2	0.62	0.80	46.1
3	R2	66	7.0	0.103	11.0	LOS A	0.4	3.2	0.62	0.80	51.2
Appro	ach	412	2.0	0.336	5.5	LOSA	1.8	12.9	0.67	0.66	54.2
East:	SH6 E										
4	L2	70	10.0	0.282	7.0	LOS A	1.7	13.9	0.53	0.58	55.2
5	T1	695	7.0	0.301	7.0	LOS A	2.0	14.3	0.50	0.55	68.2
6	R2	21	0.0	0.301	13.5	LOS A	2.0	14.3	0.49	0.54	59.1
Appro	ach	786	7.1	0.301	7.1	LOS A	2.0	14.3	0.50	0.55	66.5
North	: Ladies M	lile Access									
7	L2	27	0.0	0.225	4.2	LOS A	1.0	6.8	0.57	0.77	51.9
8	T1	1	0.0	0.225	3.7	LOS A	1.0	6.8	0.57	0.77	46.8
9	R2	178	0.0	0.225	9.8	LOS A	1.0	6.8	0.57	0.77	53.5
Appro	ach	206	0.0	0.225	9.1	LOSA	1.0	6.8	0.57	0.77	53.2
West:	SH6 W										
10	L2	60	0.0	0.227	5.6	LOS A	1.4	10.5	0.28	0.45	56.6
11	T1	549	8.0	0.242	6.0	LOS A	1.6	11.8	0.27	0.49	67.0
12	R2	131	3.0	0.242	12.7	LOS A	1.6	11.8	0.26	0.52	59.2
Appro	ach	740	6.5	0.242	7.2	LOSA	1.6	11.8	0.27	0.49	64.5
All Ve	hicles	2144	5.2	0.336	7.0	LOSA	2.0	14.3	0.46	0.57	61.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:43:12 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 1 - Do Something\Do Something Howards Drive.sip7

Site: 101 [Howards Drive/SH6 IP Roundabout 2025]

New Site Roundabout

Move	ement Pe	rformance	- Vehic	les							
Mov	OD	Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Courth	ı: Howards	veh/h	%	v/c	sec		veh	m		per veh	km/h
			1.0	0.047	4.0	1.00.4	4.2	0.0	0.64	0.57	55.0
1	L2	267	1.0	0.247	4.0	LOSA	1.3	8.9	0.61	0.57	55.2
2	T1	1	0.0	0.072	4.1	LOSA	0.3	2.2	0.58	0.75	46.3
3	R2	48	7.0	0.072	10.5	LOSA	0.3	2.2	0.58	0.75	51.5
Appro	ach	316	1.9	0.247	5.0	LOSA	1.3	8.9	0.61	0.60	54.5
East:	SH6 E										
4	L2	82	10.0	0.265	7.1	LOSA	1.6	12.7	0.53	0.60	55.3
5	T1	630	7.0	0.283	7.0	LOS A	1.8	12.9	0.50	0.56	68.2
6	R2	21	0.0	0.283	13.6	LOSA	1.8	12.9	0.49	0.54	59.1
Appro	ach	733	7.1	0.283	7.2	LOS A	1.8	12.9	0.50	0.56	66.2
North	: Ladies M	lile Access									
7	L2	22	0.0	0.168	4.3	LOSA	0.7	5.0	0.57	0.77	52.0
8	T1	1	0.0	0.168	3.8	LOS A	0.7	5.0	0.57	0.77	46.9
9	R2	126	0.0	0.168	10.0	LOS A	0.7	5.0	0.57	0.77	53.6
Appro	ach	149	0.0	0.168	9.1	LOS A	0.7	5.0	0.57	0.77	53.3
West:	SH6 W										
10	L2	90	0.0	0.261	5.5	LOSA	1.7	12.3	0.25	0.45	56.8
11	T1	571	8.0	0.278	5.9	LOSA	1.9	13.7	0.24	0.50	66.9
12	R2	208	3.0	0.278	12.7	LOSA	1.9	13.7	0.23	0.54	58.8
Appro	ach	869	6.0	0.278	7.5	LOS A	1.9	13.7	0.24	0.50	63.6
All Ve	hicles	2067	5.3	0.283	7.1	LOSA	1.9	13.7	0.41	0.56	62.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:43:13 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 1 - Do Something\Do Something Howards Drive.sip7

Site: 101 [Howards Drive/SH6 PM Roudabout 2025]

New Site Roundabout

Move	ement Pe	rformance	- Vehic	les							
Mov	OD	Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	: Howards	veh/h	%	v/c	sec		veh	m		per veh	km/h
	L2	248	1.0	0.241	4.1	LOSA	1.3	8.9	0.64	0.59	55.0
1											
2	T1	1	0.0	0.066	4.3	LOSA	0.3	2.1	0.61	0.76	46.3
3	R2	42	7.0	0.066	10.7	LOS A	0.3	2.1	0.61	0.76	51.4
Appro	ach	291	1.9	0.241	5.1	LOSA	1.3	8.9	0.64	0.61	54.4
East:	SH6 E										
4	L2	112	10.0	0.335	7.8	LOS A	2.1	16.9	0.62	0.66	54.8
5	T1	705	7.0	0.338	7.7	LOS A	2.4	16.5	0.59	0.61	67.5
6	R2	26	0.0	0.338	14.1	LOS A	2.4	16.5	0.58	0.58	58.5
Appro	ach	843	7.2	0.338	7.9	LOS A	2.4	16.9	0.60	0.61	65.2
North	: Ladies M	lile Access									
7	L2	22	0.0	0.160	5.2	LOS A	0.7	4.9	0.64	0.82	51.7
8	T1	1	0.0	0.160	4.6	LOS A	0.7	4.9	0.64	0.82	46.6
9	R2	103	0.0	0.160	10.8	LOS A	0.7	4.9	0.64	0.82	53.3
Appro	ach	126	0.0	0.160	9.8	LOSA	0.7	4.9	0.64	0.82	52.9
West:	SH6 W										
10	L2	141	0.0	0.357	5.6	LOS A	2.5	18.5	0.27	0.45	56.7
11	T1	720	8.0	0.380	6.0	LOS A	2.8	20.7	0.26	0.50	66.6
12	R2	332	3.0	0.380	12.7	LOS A	2.8	20.7	0.25	0.56	58.3
Appro	ach	1193	5.7	0.380	7.8	LOSA	2.8	20.7	0.26	0.51	62.8
All Ve	hicles	2453	5.4	0.380	7.6	LOSA	2.8	20.7	0.44	0.57	61.9

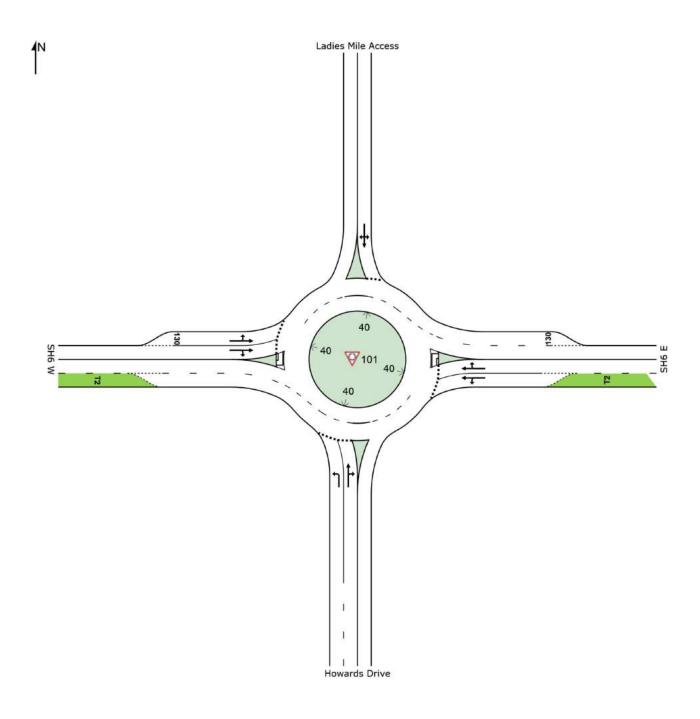
Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:43:14 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 1 - Do Something\Do Something Howards Drive.sip7

Site: 101 [Howards Drive/SH6 AM Roundabout 2025]

Roundabout

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Created: Thursday, 28 June 2018 1:30:51 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 1 - Do Something\Do Something Howards
Drive.sip7

Site: 101 [Howards Drive/SH6 AM Roundabout 2028]

New Site Roundabout

Move	ement Pe	rformance	- Vehic	les							
Mov	OD	Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	: Howards	veh/h	%	v/c	sec		veh	m		per veh	km/h
	L2	294	1.0	0.301	4.6	LOSA	1.6	11.5	0.70	0.66	54.8
1											
2	T1	1	0.0	0.116	4.8	LOSA	0.5	3.7	0.65	0.83	45.9
3	R2	71	7.0	0.116	11.3	LOS A	0.5	3.7	0.65	0.83	51.0
Appro	ach	366	2.2	0.301	5.9	LOSA	1.6	11.5	0.69	0.69	53.9
East:	SH6 E										
4	L2	74	10.0	0.319	7.1	LOS A	2.0	16.3	0.55	0.59	55.1
5	T1	778	7.0	0.340	7.1	LOS A	2.4	16.8	0.53	0.56	67.9
6	R2	30	0.0	0.340	13.6	LOS A	2.4	16.8	0.52	0.55	58.9
Appro	ach	882	7.0	0.340	7.3	LOSA	2.4	16.8	0.53	0.56	66.3
North	: Ladies M	lile Access									
7	L2	38	0.0	0.248	4.5	LOS A	1.1	7.8	0.60	0.79	52.0
8	T1	1	0.0	0.248	4.0	LOS A	1.1	7.8	0.60	0.79	46.9
9	R2	178	0.0	0.248	10.1	LOS A	1.1	7.8	0.60	0.79	53.6
Appro	ach	217	0.0	0.248	9.1	LOSA	1.1	7.8	0.60	0.79	53.3
West:	SH6 W										
10	L2	85	0.0	0.260	5.7	LOS A	1.7	12.3	0.31	0.47	56.4
11	T1	611	8.0	0.277	6.1	LOS A	1.9	13.8	0.30	0.50	66.8
12	R2	142	3.0	0.277	12.8	LOS A	1.9	13.8	0.29	0.52	59.1
Appro	ach	838	6.3	0.277	7.2	LOSA	1.9	13.8	0.30	0.50	64.2
All Ve	hicles	2303	5.3	0.340	7.2	LOSA	2.4	16.8	0.48	0.58	61.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:43:10 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 1 - Do Something\Do Something Howards Drive.sip7

Site: 101 [Howards Drive/SH6 IP Roundabout 2028]

New Site Roundabout

Move		rformance		les							
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Couth	: Howards	veh/h	%	v/c	sec		veh	m		per veh	km/h
			4.0	0.047	4.0	1.00.4	4.0	0.4	0.05	0.04	55.0
1	L2	253	1.0	0.247	4.3	LOSA	1.3	9.1	0.65	0.61	55.0
2	T1	1	0.0	0.082	4.5	LOS A	0.3	2.5	0.62	0.78	46.1
3	R2	52	7.0	0.082	10.9	LOSA	0.3	2.5	0.62	0.78	51.3
Appro	ach	306	2.0	0.247	5.4	LOS A	1.3	9.1	0.64	0.64	54.3
East:	SH6 E										
4	L2	86	10.0	0.299	7.1	LOSA	1.8	14.8	0.55	0.60	55.1
5	T1	707	7.0	0.319	7.1	LOS A	2.2	15.2	0.52	0.57	68.0
6	R2	30	0.0	0.319	13.6	LOS A	2.2	15.2	0.51	0.55	58.9
Appro	ach	823	7.1	0.319	7.4	LOS A	2.2	15.2	0.52	0.57	66.0
North:	: Ladies M	lile Access									
7	L2	31	0.0	0.206	4.6	LOS A	0.9	6.3	0.60	0.79	52.0
8	T1	1	0.0	0.206	4.0	LOS A	0.9	6.3	0.60	0.79	46.9
9	R2	146	0.0	0.206	10.2	LOS A	0.9	6.3	0.60	0.79	53.6
Appro	ach	178	0.0	0.206	9.2	LOS A	0.9	6.3	0.60	0.79	53.3
West:	SH6 W										
10	L2	102	0.0	0.282	5.6	LOSA	1.8	13.5	0.28	0.46	56.6
11	T1	636	8.0	0.301	6.0	LOSA	2.0	15.1	0.27	0.50	66.8
12	R2	190	3.0	0.301	12.8	LOS A	2.0	15.1	0.26	0.53	58.9
Appro	ach	928	6.1	0.301	7.3	LOSA	2.0	15.1	0.27	0.50	63.8
All Ve	hicles	2235	5.4	0.319	7.2	LOSA	2.2	15.2	0.44	0.57	62.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:43:09 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 1 - Do Something\Do Something Howards Drive.sip7

Site: 101 [Howards Drive/SH6 PM Roudabout 2028]

New Site Roundabout

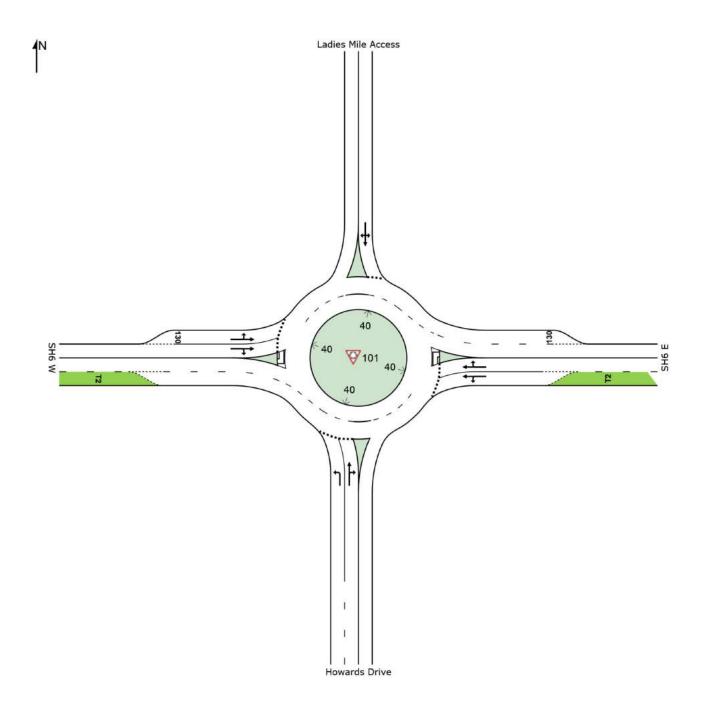
Movement Performance - Vehicles											
Mov	OD	Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Courth	. Howards	veh/h	%	v/c	sec		veh	m		per veh	km/h
South: Howards 1 L2			1.0	0.000	4.0	1.00.4	1.0	44.0	0.74	0.00	F4.7
1		268	1.0	0.282	4.6	LOSA	1.6	11.0	0.71	0.66	54.7
2	T1	1	0.0	0.077	4.8	LOSA	0.3	2.5	0.66	0.80	46.0
3	R2	46	7.0	0.077	11.2	LOSA	0.3	2.5	0.66	0.80	51.1
Approach		315	1.9	0.282	5.6	LOSA	1.6	11.0	0.70	0.68	54.1
East:	SH6 E										
4	L2	117	10.0	0.368	7.9	LOSA	2.4	19.2	0.63	0.66	54.7
5	T1	792	7.0	0.385	7.7	LOS A	2.8	19.6	0.61	0.61	67.3
6	R2	37	0.0	0.385	14.2	LOS A	2.8	19.6	0.60	0.59	58.3
Appro	ach	946	7.1	0.385	8.0	LOS A	2.8	19.6	0.61	0.62	65.0
North	: Ladies M	lile Access									
7	L2	31	0.0	0.235	5.5	LOS A	1.1	7.6	0.68	0.85	51.4
8	T1	1	0.0	0.235	4.9	LOS A	1.1	7.6	0.68	0.85	46.4
9	R2	147	0.0	0.235	11.1	LOS A	1.1	7.6	0.68	0.85	53.0
Appro	ach	179	0.0	0.235	10.1	LOS A	1.1	7.6	0.68	0.85	52.7
West:	SH6 W										
10	L2	142	0.0	0.371	5.7	LOS A	2.6	19.4	0.31	0.46	56.5
11	T1	802	8.0	0.396	6.1	LOS A	3.0	21.8	0.30	0.50	66.5
12	R2	280	3.0	0.396	12.8	LOS A	3.0	21.8	0.29	0.54	58.6
Approach		1224	5.9	0.396	7.6	LOSA	3.0	21.8	0.30	0.51	63.3
All Vehicles		2664	5.5	0.396	7.6	LOSA	3.0	21.8	0.48	0.59	61.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.


Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:43:08 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 1 - Do Something\Do Something Howards Drive.sip7

Site: 101 [Howards Drive/SH6 AM Roundabout 2037]

Roundabout

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Created: Thursday, 28 June 2018 1:31:17 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 1 - Do Something\Do Something Howards Drive.sip7

Site: 101 [Howards Drive/SH6 AM Roundabout 2037]

New Site Roundabout

Movement Performance - Vehicles											
Mov	OD	Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	· Howards	veh/h	%	v/c	sec		veh	m		per veh	km/h
South: Howards		201	1.0	0.227	5.0	LOSA	1.2	8.7	0.73	0.72	54.7
2	T1	1	0.0	0.121	5.2	LOSA	0.5	4.1	0.70	0.86	45.7
3	R2	72	7.0	0.121	11.7	LOS A	0.5	4.1	0.70	0.86	50.8
Approach		274	2.6	0.227	6.8	LOS A	1.2	8.7	0.72	0.75	53.5
East:	SH6 E										
4	L2	75	10.0	0.398	7.0	LOS A	2.7	21.7	0.55	0.58	55.0
5	T1	1027	7.0	0.425	7.0	LOS A	3.2	22.3	0.53	0.56	67.9
6	R2	33	0.0	0.425	13.5	LOS A	3.2	22.3	0.51	0.54	58.9
Appro	ach	1135	7.0	0.425	7.2	LOSA	3.2	22.3	0.53	0.56	66.6
North	: Ladies M	lile Access									
7	L2	42	0.0	0.224	5.1	LOS A	1.0	7.1	0.66	0.84	51.9
8	T1	1	0.0	0.224	4.6	LOS A	1.0	7.1	0.66	0.84	46.8
9	R2	132	0.0	0.224	10.8	LOS A	1.0	7.1	0.66	0.84	53.5
Appro	ach	175	0.0	0.224	9.4	LOS A	1.0	7.1	0.66	0.84	53.1
West:	SH6 W										
10	L2	94	0.0	0.336	5.8	LOS A	2.3	17.3	0.34	0.47	56.3
11	T1	840	8.0	0.358	6.1	LOS A	2.7	19.6	0.33	0.49	66.8
12	R2	145	3.0	0.358	12.9	LOS A	2.7	19.6	0.32	0.51	59.2
Appro	ach	1079	6.6	0.358	7.0	LOSA	2.7	19.6	0.33	0.49	64.6
All Ve	hicles	2663	5.9	0.425	7.2	LOSA	3.2	22.3	0.48	0.57	63.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:43:07 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 1 - Do Something\Do Something Howards Drive.sip7

Site: 101 [Howards Drive/SH6 IP Roundabout 2037]

New Site Roundabout

Movement Performance - Vehicles											
Mov	OD	Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Courth	. Howards	veh/h	%	v/c	sec		veh	m		per veh	km/h
South: Howards			4.0	0.044	5 4	1.00.4	4.0	0.0	0.74	0.70	54.0
1	L2	213	1.0	0.241	5.1	LOSA	1.3	9.3	0.74	0.72	54.6
2	T1	1	0.0	0.095	5.3	LOS A	0.4	3.1	0.69	0.84	45.7
3	R2	54	7.0	0.095	11.7	LOSA	0.4	3.1	0.69	0.84	50.7
Approach		268	2.2	0.241	6.4	LOS A	1.3	9.3	0.73	0.75	53.7
East:	SH6 E										
4	L2	87	10.0	0.400	7.0	LOS A	2.7	21.8	0.56	0.59	55.0
5	T1	1017	7.0	0.427	7.0	LOSA	3.2	22.4	0.53	0.56	67.9
6	R2	33	0.0	0.427	13.6	LOS A	3.2	22.4	0.52	0.54	58.9
Appro	ach	1137	7.0	0.427	7.2	LOS A	3.2	22.4	0.53	0.56	66.4
North	: Ladies M	lile Access									
7	L2	35	0.0	0.208	4.9	LOS A	0.9	6.5	0.64	0.82	51.9
8	T1	1	0.0	0.208	4.4	LOS A	0.9	6.5	0.64	0.82	46.8
9	R2	133	0.0	0.208	10.6	LOS A	0.9	6.5	0.64	0.82	53.6
Appro	ach	169	0.0	0.208	9.4	LOS A	0.9	6.5	0.64	0.82	53.2
West:	SH6 W										
10	L2	89	0.0	0.319	5.7	LOSA	2.2	16.0	0.30	0.46	56.5
11	T1	801	8.0	0.340	6.0	LOS A	2.4	18.1	0.29	0.49	67.0
12	R2	151	3.0	0.340	12.8	LOS A	2.4	18.1	0.28	0.51	59.3
Appro	ach	1041	6.6	0.340	7.0	LOS A	2.4	18.1	0.29	0.49	64.8
All Ve	hicles	2615	5.9	0.427	7.2	LOSA	3.2	22.4	0.46	0.57	63.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:43:07 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 1 - Do Something\Do Something Howards Drive.sip7

Site: 101 [Howards Drive/SH6 PM Roudabout 2037]

New Site Roundabout

Move	ement Pe	rformance	- Vehic	les							
Mov	OD	Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Courth	: Howards	veh/h	%	v/c	sec		veh	m		per veh	km/h
			1.0	0.270	6.0	1.00.4	2.4	47.4	0.07	0.00	F0.7
1	L2	273	1.0	0.378	6.9	LOSA	2.4	17.1	0.87	0.93	53.7
2	T1	1	0.0	0.097	6.4	LOSA	0.5	3.5	0.78	0.89	45.1
3	R2	47	7.0	0.097	12.9	LOSA	0.5	3.5	0.78	0.89	50.0
Appro	ach	321	1.9	0.378	7.7	LOSA	2.4	17.1	0.85	0.92	53.1
East:	SH6 E										
4	L2	119	10.0	0.515	7.8	LOSA	3.9	31.2	0.68	0.66	54.4
5	T1	1233	7.0	0.549	7.7	LOS A	4.7	32.6	0.65	0.61	66.9
6	R2	42	0.0	0.549	14.1	LOS A	4.7	32.6	0.64	0.58	58.2
Appro	ach	1394	7.0	0.549	7.9	LOS A	4.7	32.6	0.65	0.61	65.4
North	: Ladies M	lile Access									
7	L2	35	0.0	0.267	5.6	LOS A	1.2	8.7	0.70	0.86	51.3
8	T1	1	0.0	0.267	5.1	LOS A	1.2	8.7	0.70	0.86	46.4
9	R2	163	0.0	0.267	11.3	LOS A	1.2	8.7	0.70	0.86	52.9
Appro	ach	199	0.0	0.267	10.3	LOS A	1.2	8.7	0.70	0.86	52.6
West:	SH6 W										
10	L2	105	0.0	0.378	5.7	LOSA	2.7	20.2	0.32	0.46	56.4
11	T1	939	8.0	0.403	6.1	LOS A	3.1	22.8	0.31	0.49	66.8
12	R2	190	3.0	0.403	12.8	LOS A	3.1	22.8	0.30	0.51	59.2
Appro	ach	1234	6.5	0.403	7.1	LOS A	3.1	22.8	0.31	0.49	64.5
All Ve	hicles	3148	5.9	0.549	7.7	LOSA	4.7	32.6	0.54	0.61	62.6

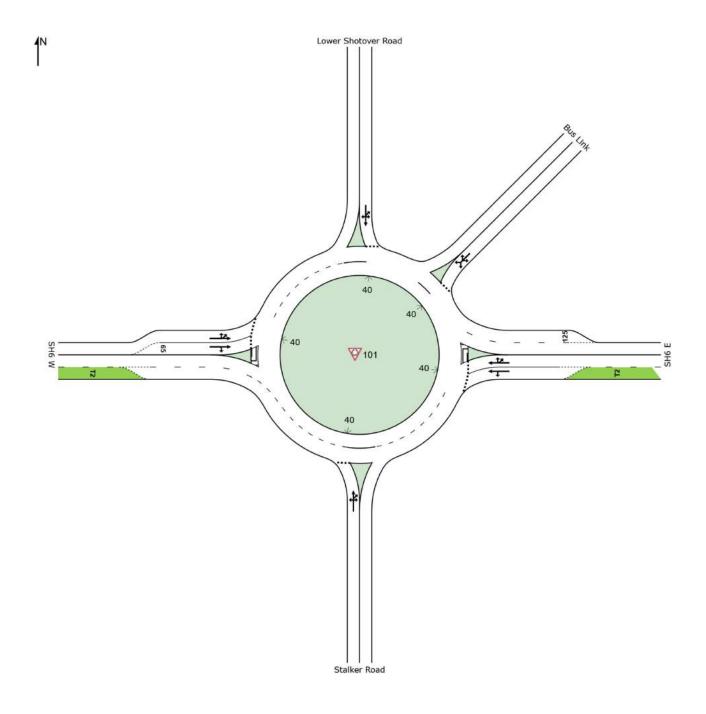
Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:43:06 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 1 - Do Something\Do Something Howards Drive.sip7

SITE LAYOUT

Roundabout

Site: 101 [Stalker Road/SH6 AM Roundabout 2023]

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Created: Thursday, 28 June 2018 1:32:04 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 1 - Do Something\Do Something Stalker Road.sip7

Site: 101 [Stalker Road/SH6 AM Roundabout 2023]

New Site Roundabout

Move	ment Pe	rformance	e - Vehic	cles				_	_	_	_
Mov	OD	Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	: Stalker F	veh/h Road	%	v/c	sec		veh	m		per veh	km/h
1	L2	298	2.0	0.638	11.6	LOS A	4.6	32.9	0.88	1.07	49.7
2	T1	27	0.0	0.638	11.0	LOS A	4.6	32.9	0.88	1.07	51.5
3a	R1	1	100.0	0.638	22.1	LOS B	4.6	32.9	0.88	1.07	44.9
3	R2	42	0.0	0.638	17.2	LOS B	4.6	32.9	0.88	1.07	51.6
Appro	ach	368	1.9	0.638	12.3	LOS A	4.6	32.9	0.88	1.07	50.0
East:	SH6 E										
4	L2	31	5.0	0.424	6.9	LOS A	3.0	23.2	0.57	0.58	54.9
5	T1	1213	5.0	0.466	7.0	LOS A	3.7	26.0	0.55	0.56	67.7
6	R2	34	5.0	0.466	13.7	LOS A	3.7	26.0	0.54	0.54	58.7
6b	R3	1	100.0	0.466	17.0	LOS B	3.7	26.0	0.54	0.54	59.4
Appro	ach	1279	5.1	0.466	7.2	LOSA	3.7	26.0	0.55	0.56	67.0
North	East: Bus	Link									
24b	L3	1	100.0	0.009	8.3	LOS A	0.0	0.5	0.63	0.66	43.4
24a	L1	1	100.0	0.009	7.1	LOS A	0.0	0.5	0.63	0.66	45.6
26a	R1	1	100.0	0.009	12.6	LOS A	0.0	0.5	0.63	0.66	44.2
26b	R3	1	100.0	0.009	14.7	LOS B	0.0	0.5	0.63	0.66	47.6
Appro	ach	4	100.0	0.009	10.7	LOSA	0.0	0.5	0.63	0.66	45.1
North:	Lower Sh	notover Roa	ıd								
7b	L3	1	100.0	0.227	11.3	LOS A	1.0	7.4	0.60	0.83	51.1
7	L2	21	5.0	0.227	7.9	LOS A	1.0	7.4	0.60	0.83	60.0
8	T1	18	0.0	0.227	8.2	LOS A	1.0	7.4	0.60	0.83	54.2
9	R2	150	5.0	0.227	15.2	LOS B	1.0	7.4	0.60	0.83	62.0
Appro	ach	190	5.0	0.227	13.7	LOS A	1.0	7.4	0.60	0.83	60.9
West:	SH6 W										
10	L2	198	8.0	0.277	5.8	LOS A	1.9	13.9	0.33	0.48	65.2
10a	L1	1	100.0	0.277	6.6	LOS A	1.9	13.9	0.33	0.48	57.9
11	T1	612	8.0	0.305	6.0	LOS A	2.2	16.4	0.32	0.49	66.8
12	R2	113	5.0	0.305	12.8	LOS A	2.2	16.4	0.31	0.50	59.4
Appro	ach	924	7.7	0.305	6.8	LOSA	2.2	16.4	0.32	0.49	65.5
All Ve	hicles	2765	5.7	0.638	8.2	LOSA	4.6	32.9	0.52	0.62	63.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:53:17 PM

Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 1 - Do Something\Do Something Stalker Road.sip7

New Site Roundabout

Move	ement Pe	rformance	e - Vehic	cles							
Mov	OD	Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	ı: Stalker F	veh/h Road	%	v/c	sec		veh	m		per veh	km/h
1	L2	214	2.0	0.408	6.7	LOS A	2.3	16.1	0.77	0.87	53.1
2	T1	20	0.0	0.408	6.0	LOS A	2.3	16.1	0.77	0.87	55.1
3a	R1	1	100.0	0.408	15.8	LOS B	2.3	16.1	0.77	0.87	47.6
3	R2	40	0.0	0.408	12.2	LOSA	2.3	16.1	0.77	0.87	55.2
Appro		275	1.9	0.408	7.5	LOS A	2.3	16.1	0.77	0.87	53.5
				000					V	0.0.	00.0
	SH6 E	22	F 0	0.040	7.0	1.00.4	2.3	47.5	0.50	0.50	F4.0
4	L2	22	5.0	0.343	7.0	LOSA		17.5	0.56	0.58	54.9
5	T1	949	5.0	0.377	7.0	LOSA	2.8	19.7	0.55	0.56	67.7
6	R2	38	5.0	0.377	13.7	LOSA	2.8	19.7	0.54	0.55	58.7
6b	R3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100.0	0.377	17.0	LOS B	2.8	19.7	0.54	0.55	59.4
Appro		1010	5.1	0.377	7.3	LOSA	2.8	19.7	0.55	0.56	67.0
North	East: Bus	Link									
24b	L3	1	100.0	0.011	9.7	LOS A	0.0	0.5	0.67	0.70	42.7
24a	L1	1	100.0	0.011	8.5	LOS A	0.0	0.5	0.67	0.70	44.8
26a	R1	1	100.0	0.011	14.0	LOS A	0.0	0.5	0.67	0.70	43.5
26b	R3	1	100.0	0.011	16.2	LOS B	0.0	0.5	0.67	0.70	46.7
Appro	ach	4	100.0	0.011	12.1	LOS A	0.0	0.5	0.67	0.70	44.4
North	: Lower Sh	notover Roa	ıd								
7b	L3	1	100.0	0.276	12.7	LOS A	1.3	9.2	0.66	0.87	50.9
7	L2	26	5.0	0.276	8.6	LOS A	1.3	9.2	0.66	0.87	59.8
8	T1	35	0.0	0.276	8.9	LOS A	1.3	9.2	0.66	0.87	54.0
9	R2	148	5.0	0.276	16.0	LOS B	1.3	9.2	0.66	0.87	61.8
Appro	ach	210	4.6	0.276	13.9	LOS A	1.3	9.2	0.66	0.87	60.1
West:	SH6 W										
10	L2	172	8.0	0.331	5.8	LOSA	2.3	17.1	0.33	0.47	65.1
10a	L1	1	100.0	0.331	6.6	LOSA	2.3	17.1	0.33	0.47	57.9
11	T1	805	8.0	0.365	6.1	LOSA	2.7	20.2	0.32	0.49	66.9
12	R2	135	5.0	0.365	12.9	LOSA	2.7	20.2	0.31	0.50	59.4
Appro		1113	7.7	0.365	6.9	LOSA	2.7	20.2	0.32	0.49	65.6
, , , , , ,		1113		0.000	0.5	2007	۷.۱	20.2	0.02	0.73	30.0
All Ve	hicles	2612	6.0	0.408	7.7	LOSA	2.8	20.2	0.48	0.59	64.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

 ${\bf SIDRA~INTERSECTION~7.0~|~Copyright~@~2000-2017~Akcelik~and~Associates~Pty~Ltd~|~sidrasolutions.com~accellations.}$

Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:53:19 PM

Site: 101 [Stalker Road/SH6 PM Roundabout 2023]

New Site Roundabout

Mov OD Demand Flows Total HV Satn Satn Satn Service Service Service Vehicles Distance Queue Stop Rx Stop Rx Service Vehicles Distance Queue Stop Rx Stop Rx Service Vehicles Distance Queue Stop Rx Stop Rx Stop Rx Service Vehicles Distance Queue Stop Rx Stop	e Speed h km/h 5 53.1
Veh/h % V/c sec Veh m Per V South: Stalker Road 1 L2 177 2.0 0.369 6.3 LOS A 2.0 14.2 0.77 0. 2 T1 17 0.0 0.369 5.7 LOS A 2.0 14.2 0.77 0. 3a R1 1 100.0 0.369 15.3 LOS B 2.0 14.2 0.77 0. Approach 242 1.9 0.369 7.4 LOS A 2.0 14.2 0.77 0. Approach 242 1.9 0.369 7.4 LOS A 2.0 14.2 0.77 0. Approach 242 1.9 0.369 7.4 LOS A 2.0 14.2 0.77 0. East: SH6 E 4 L2 18 5.0 0.355 7.6 LOS A 2.4 18.7 0.65 0. 5 T1 897 5.0 <th>6 53.1</th>	6 53.1
South: Stalker Road	6 53.1
1 L2 177 2.0 0.369 6.3 LOS A 2.0 14.2 0.77 0. 2 T1 17 0.0 0.369 5.7 LOS A 2.0 14.2 0.77 0. 3a R1 1 100.0 0.369 11.9 LOS A 2.0 14.2 0.77 0. Approach 242 1.9 0.369 7.4 LOS A 2.0 14.2 0.77 0. Approach 242 1.9 0.369 7.4 LOS A 2.0 14.2 0.77 0. Approach 242 1.9 0.369 7.4 LOS A 2.0 14.2 0.77 0. Approach 242 1.9 0.369 7.6 LOS A 2.4 18.7 0.65 0. 5 T1 897 5.0 0.391 7.6 LOS A 3.1 21.6 0.64 0. 6 R2 50 <td< th=""><th></th></td<>	
2 T1 17 0.0 0.369 5.7 LOSA 2.0 14.2 0.77 0. 3a R1 1 100.0 0.369 15.3 LOSB 2.0 14.2 0.77 0. 3 R2 47 0.0 0.369 11.9 LOSA 2.0 14.2 0.77 0. Approach 242 1.9 0.369 7.4 LOSA 2.0 14.2 0.77 0. East: SH6 E 4 L2 18 5.0 0.355 7.6 LOSA 3.1 21.6 0.64 0. 5 T1 897 5.0 0.391 7.6 LOSA 3.1 21.6 0.64 0. 6 R2 50 5.0 0.391 14.2 LOSA 3.1 21.6 0.64 0. 6 R2 50 5.0 0.391 17.8 LOSB 3.1 21.6 0.64 0. Approach 966 5.1 0.391 8.0 LOSA 3.1 21.6 0.64 0. NorthEast: Bus Link 24b L3 1 100.0 0.016 15.2 LOSB 3.1 21.6 0.64 0. NorthEast: Bus Link 24a L1 1 100.0 0.016 14.0 LOSA 0.1 0.8 0.79 0. 26a R1 1 100.0 0.016 19.5 LOSB 0.1 0.8 0.79 0. 26b R3 1 100.0 0.016 17.6 LOSB 0.1 0.8 0.79 0. Approach 4 100.0 0.016 17.6 LOSB 0.1 0.8 0.79 0. North: Lower Shotover Road 7b L3 1 100.0 0.464 18.0 LOSB 2.7 19.7 0.81 0. 8 T1 60 0.0 0.464 12.4 LOSA 2.7 19.7 0.81 0. 9 R2 178 5.0 0.464 19.7 LOSB 2.7 19.7 0.81 0. Approach 277 4.3 0.464 17.2 LOSB 2.7 19.7 0.81 0.	
3a R1 1 100.0 0.369 15.3 LOS B 2.0 14.2 0.77 0. 3 R2 47 0.0 0.369 11.9 LOS A 2.0 14.2 0.77 0. Approach 242 1.9 0.369 7.4 LOS A 2.0 14.2 0.77 0. East: SH6 E 4 L2 18 5.0 0.355 7.6 LOS A 2.4 18.7 0.65 0. 5 T1 897 5.0 0.391 7.6 LOS A 3.1 21.6 0.64 0. 6 R2 50 5.0 0.391 17.8 LOS A 3.1 21.6 0.64 0. Approach 966 5.1 0.391 17.8 LOS B 3.1 21.6 0.64 0. NorthEast: Bus Link 24b L3 1 100.0 0.016 15.2 LOS B 0.1 0.8	55.1
3 R2 47 0.0 0.369 11.9 LOS A 2.0 14.2 0.77 0. Approach 242 1.9 0.369 7.4 LOS A 2.0 14.2 0.77 0. East: SH6 E 4 L2 18 5.0 0.355 7.6 LOS A 2.4 18.7 0.65 0. 5 T1 897 5.0 0.391 7.6 LOS A 3.1 21.6 0.64 0. 6 R2 50 5.0 0.391 17.8 LOS B 3.1 21.6 0.64 0. 6b R3 1 100.0 0.391 17.8 LOS B 3.1 21.6 0.64 0. Approach 966 5.1 0.391 8.0 LOS A 3.1 21.6 0.64 0. NorthEast: Bus Link 24b L3 1 100.0 0.016 15.2 LOS B 0.1 0.8 0	
Approach 242 1.9 0.369 7.4 LOS A 2.0 14.2 0.77 0. East: SH6 E 4 L2 18 5.0 0.355 7.6 LOS A 2.4 18.7 0.65 0. 5 T1 897 5.0 0.391 7.6 LOS A 3.1 21.6 0.64 0. 6 R2 50 5.0 0.391 14.2 LOS A 3.1 21.6 0.64 0. 6b R3 1 100.0 0.391 17.8 LOS B 3.1 21.6 0.64 0. Approach 966 5.1 0.391 8.0 LOS A 3.1 21.6 0.64 0. NorthEast: Bus Link 24b L3 1 100.0 0.016 15.2 LOS B 0.1 0.8 0.79 0. 24a L1 1 100.0 0.016 15.2 LOS B 0.1 0.8 0.79 0	
East: SH6 E 4	
4 L2 18 5.0 0.355 7.6 LOS A 2.4 18.7 0.65 0. 5 T1 897 5.0 0.391 7.6 LOS A 3.1 21.6 0.64 0. 6 R2 50 5.0 0.391 14.2 LOS A 3.1 21.6 0.64 0. 6b R3 1 100.0 0.391 17.8 LOS B 3.1 21.6 0.64 0. Approach 966 5.1 0.391 8.0 LOS A 3.1 21.6 0.64 0. NorthEast: Bus Link 24b L3 1 100.0 0.016 15.2 LOS B 0.1 0.8 0.79 0. 24a L1 1 100.0 0.016 14.0 LOS A 0.1 0.8 0.79 0. 26a R1 1 100.0 0.016 19.5 LOS B 0.1 0.8 0.79 0. 26b R3 1 100.0 0.016 17.6<	
5 T1 897 5.0 0.391 7.6 LOS A 3.1 21.6 0.64 0.64 0.66 R2 50 5.0 0.391 14.2 LOS A 3.1 21.6 0.64	4 544
6 R2 50 5.0 0.391 14.2 LOS A 3.1 21.6 0.64 0.64 0.66 0.64 0.79 0.66 0.79 0.66 0.79 0.66 0.64 1.06 0.79 0.66 1.06 0.79 0.66 0.64 1.06 0.64 0.68 0.79 0.66 0.64 0.68 0.79 0.68 0.79 0.68 0.79 0.68 0.	
6b R3 1 100.0 0.391 17.8 LOS B 3.1 21.6 0.64 0. Approach 966 5.1 0.391 8.0 LOS A 3.1 21.6 0.64 0. NorthEast: Bus Link 24b L3 1 100.0 0.016 15.2 LOS B 0.1 0.8 0.79 0. 24a L1 1 100.0 0.016 14.0 LOS A 0.1 0.8 0.79 0. 26a R1 1 100.0 0.016 19.5 LOS B 0.1 0.8 0.79 0. 26b R3 1 100.0 0.016 21.7 LOS B 0.1 0.8 0.79 0. Approach 4 100.0 0.016 17.6 LOS B 0.1 0.8 0.79 0. North: Lower Shotover Road 7 L2 38 5.0 0.464 18.0 LOS B 2.7 19.7	
Approach 966 5.1 0.391 8.0 LOS A 3.1 21.6 0.64 0. NorthEast: Bus Link 24b L3 1 100.0 0.016 15.2 LOS B 0.1 0.8 0.79 0. 24a L1 1 100.0 0.016 14.0 LOS A 0.1 0.8 0.79 0. 26a R1 1 100.0 0.016 19.5 LOS B 0.1 0.8 0.79 0. 26b R3 1 100.0 0.016 21.7 LOS B 0.1 0.8 0.79 0. Approach 4 100.0 0.016 17.6 LOS B 0.1 0.8 0.79 0. North: Lower Shotover Road 7 L2 38 5.0 0.464 18.0 LOS B 2.7 19.7 0.81 0. 7 L2 38 5.0 0.464 12.4 LOS A 2.7 19.7	
NorthEast: Bus Link 24b L3	
24b L3 1 100.0 0.016 15.2 LOS B 0.1 0.8 0.79 0. 24a L1 1 100.0 0.016 14.0 LOS A 0.1 0.8 0.79 0. 26a R1 1 100.0 0.016 19.5 LOS B 0.1 0.8 0.79 0. 26b R3 1 100.0 0.016 21.7 LOS B 0.1 0.8 0.79 0. Approach 4 100.0 0.016 17.6 LOS B 0.1 0.8 0.79 0. North: Lower Shotover Road 7 L2 38 5.0 0.464 18.0 LOS B 2.7 19.7 0.81 0. 7 L2 38 5.0 0.464 12.4 LOS A 2.7 19.7 0.81 0. 8 T1 60 0.0 0.464 12.6 LOS A 2.7 19.7 0.81 0.	1 66.0
24a L1 1 100.0 0.016 14.0 LOS A 0.1 0.8 0.79 0. 26a R1 1 100.0 0.016 19.5 LOS B 0.1 0.8 0.79 0. 26b R3 1 100.0 0.016 21.7 LOS B 0.1 0.8 0.79 0. Approach 4 100.0 0.016 17.6 LOS B 0.1 0.8 0.79 0. North: Lower Shotover Road 7b L3 1 100.0 0.464 18.0 LOS B 2.7 19.7 0.81 0. 7 L2 38 5.0 0.464 12.4 LOS A 2.7 19.7 0.81 0. 8 T1 60 0.0 0.464 12.6 LOS A 2.7 19.7 0.81 0. 9 R2 178 5.0 0.464 19.7 LOS B 2.7 19.7 0.81 0. Approach 277 4.3 0.464 17.2	
26a R1 1 100.0 0.016 19.5 LOS B 0.1 0.8 0.79 0. 26b R3 1 100.0 0.016 21.7 LOS B 0.1 0.8 0.79 0. Approach 4 100.0 0.016 17.6 LOS B 0.1 0.8 0.79 0. North: Lower Shotover Road 7b L3 1 100.0 0.464 18.0 LOS B 2.7 19.7 0.81 0. 7 L2 38 5.0 0.464 12.4 LOS A 2.7 19.7 0.81 0. 8 T1 60 0.0 0.464 12.6 LOS A 2.7 19.7 0.81 0. 9 R2 178 5.0 0.464 19.7 LOS B 2.7 19.7 0.81 0. Approach 277 4.3 0.464 17.2 LOS B 2.7 19.7 <td< td=""><td></td></td<>	
26b R3 1 100.0 0.016 21.7 LOS B 0.1 0.8 0.79 0. Approach 4 100.0 0.016 17.6 LOS B 0.1 0.8 0.79 0. North: Lower Shotover Road The L3 1 100.0 0.464 18.0 LOS B 2.7 19.7 0.81 0. 7 L2 38 5.0 0.464 12.4 LOS A 2.7 19.7 0.81 0. 8 T1 60 0.0 0.464 12.6 LOS A 2.7 19.7 0.81 0. 9 R2 178 5.0 0.464 19.7 LOS B 2.7 19.7 0.81 0. Approach 277 4.3 0.464 17.2 LOS B 2.7 19.7 0.81 0.	
Approach 4 100.0 0.016 17.6 LOS B 0.1 0.8 0.79 0. North: Lower Shotover Road 7b L3 1 100.0 0.464 18.0 LOS B 2.7 19.7 0.81 0. 7 L2 38 5.0 0.464 12.4 LOS A 2.7 19.7 0.81 0. 8 T1 60 0.0 0.464 12.6 LOS A 2.7 19.7 0.81 0. 9 R2 178 5.0 0.464 19.7 LOS B 2.7 19.7 0.81 0. Approach 277 4.3 0.464 17.2 LOS B 2.7 19.7 0.81 0.	
North: Lower Shotover Road 7b L3 1 100.0 0.464 18.0 LOS B 2.7 19.7 0.81 0. 7 L2 38 5.0 0.464 12.4 LOS A 2.7 19.7 0.81 0. 8 T1 60 0.0 0.464 12.6 LOS A 2.7 19.7 0.81 0. 9 R2 178 5.0 0.464 19.7 LOS B 2.7 19.7 0.81 0. Approach 277 4.3 0.464 17.2 LOS B 2.7 19.7 0.81 0.	
7b L3 1 100.0 0.464 18.0 LOS B 2.7 19.7 0.81 0. 7 L2 38 5.0 0.464 12.4 LOS A 2.7 19.7 0.81 0. 8 T1 60 0.0 0.464 12.6 LOS A 2.7 19.7 0.81 0. 9 R2 178 5.0 0.464 19.7 LOS B 2.7 19.7 0.81 0. Approach 277 4.3 0.464 17.2 LOS B 2.7 19.7 0.81 0.	1 41.7
7 L2 38 5.0 0.464 12.4 LOS A 2.7 19.7 0.81 0. 8 T1 60 0.0 0.464 12.6 LOS A 2.7 19.7 0.81 0. 9 R2 178 5.0 0.464 19.7 LOS B 2.7 19.7 0.81 0. Approach 277 4.3 0.464 17.2 LOS B 2.7 19.7 0.81 0.	
8 T1 60 0.0 0.464 12.6 LOS A 2.7 19.7 0.81 0. 9 R2 178 5.0 0.464 19.7 LOS B 2.7 19.7 0.81 0. Approach 277 4.3 0.464 17.2 LOS B 2.7 19.7 0.81 0.	9 48.9
9 R2 178 5.0 0.464 19.7 LOS B 2.7 19.7 0.81 0. Approach 277 4.3 0.464 17.2 LOS B 2.7 19.7 0.81 0.	9 57.1
Approach 277 4.3 0.464 17.2 LOS B 2.7 19.7 0.81 0.	9 51.7
	9 58.9
West: SH6 W	9 56.9
TTOOL OI IO TT	
10 L2 184 8.0 0.465 6.1 LOS A 3.7 27.7 0.41 0.	9 64.5
10a L1 1 100.0 0.465 7.1 LOS A 3.7 27.7 0.41 0.	
11 T1 1177 8.0 0.513 6.3 LOS A 4.5 33.2 0.40 0.	0 66.4
12 R2 186 5.0 0.513 13.0 LOS A 4.5 33.2 0.39 0.	1 59.0
Approach 1548 7.7 0.513 7.0 LOS A 4.5 33.2 0.40 0.	
All Vehicles 3037 6.2 0.513 8.3 LOS A 4.5 33.2 0.54 0.	1 63.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

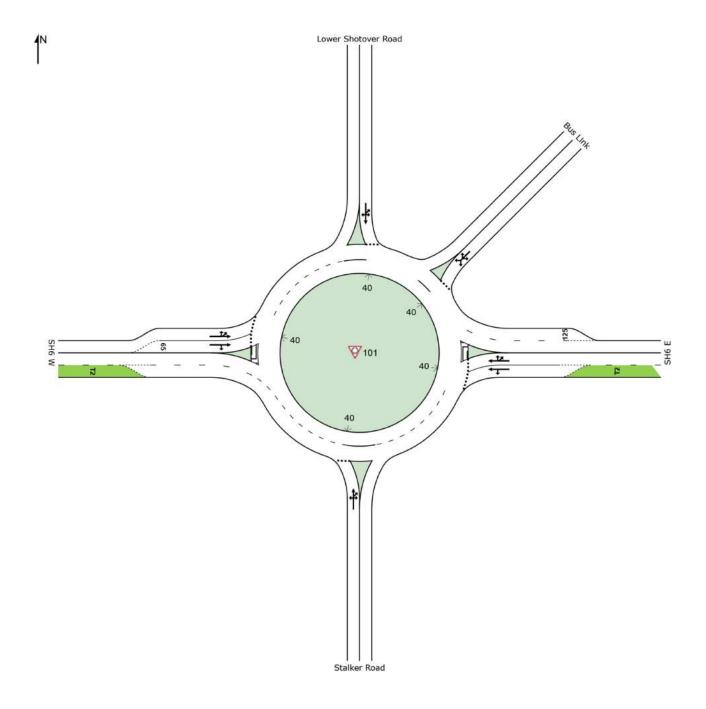
Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:53:20 PM

Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 1 - Do Something\Do Something Stalker Road.sip7

SITE LAYOUT

Roundabout

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Created: Thursday, 28 June 2018 1:32:21 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 1 - Do Something\Do Something Stalker Road.sip7

Site: 101 [Stalker Road/SH6 AM Roundabout 2025]

New Site Roundabout

Move	ment Pe	rformanc	e - Ve <u>hic</u>	les		_					
Mov	OD		d Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	: Stalker F	veh/h	%	v/c	sec		veh	m		per veh	km/h
1	L2	367	2.0	0.756	14.3	LOS A	6.6	46.8	0.92	1.18	48.0
2	T1	28	0.0	0.756	13.7	LOSA	6.6	46.8	0.92	1.18	49.6
3a	R1	1	100.0	0.756	25.0	LOS B	6.6	46.8	0.92	1.18	43.5
3	R2	52	0.0	0.756	19.9	LOS B	6.6	46.8	0.92	1.18	49.7
Appro		448	1.9	0.756	15.0	LOS B	6.6	46.8	0.92	1.18	48.2
		770	1.5	0.750	10.0	100 В	0.0	40.0	0.52	1.10	70.2
	SH6 E										
4	L2	41	5.0	0.412	7.1	LOSA	2.9	22.2	0.59	0.59	54.8
5	T1	1140	5.0	0.453	7.1	LOSA	3.6	25.0	0.57	0.57	67.5
6	R2	37	5.0	0.453	13.8	LOSA	3.6	25.0	0.56	0.55	58.6
6b	R3	1	100.0	0.453	17.2	LOS B	3.6	25.0	0.56	0.55	59.2
Appro	ach	1219	5.1	0.453	7.4	LOSA	3.6	25.0	0.57	0.57	66.7
North	East: Bus	Link									
24b	L3	1	100.0	0.010	9.0	LOSA	0.0	0.5	0.65	0.68	43.0
24a	L1	1	100.0	0.010	7.8	LOSA	0.0	0.5	0.65	0.68	45.2
26a	R1	1	100.0	0.010	13.3	LOSA	0.0	0.5	0.65	0.68	43.9
26b	R3	1	100.0	0.010	15.4	LOS B	0.0	0.5	0.65	0.68	47.1
Appro	ach	4	100.0	0.010	11.4	LOSA	0.0	0.5	0.65	0.68	44.8
North:	Lower Sh	notover Roa	ad								
7b	L3	1	100.0	0.248	11.9	LOSA	1.1	8.2	0.63	0.86	50.9
7	L2	21	5.0	0.248	8.2	LOS A	1.1	8.2	0.63	0.86	59.7
8	T1	20	0.0	0.248	8.5	LOS A	1.1	8.2	0.63	0.86	54.0
9	R2	155	5.0	0.248	15.6	LOS B	1.1	8.2	0.63	0.86	61.7
Appro	ach	197	5.0	0.248	14.0	LOS A	1.1	8.2	0.63	0.86	60.6
West:	SH6 W										
10	L2	215	8.0	0.309	5.9	LOSA	2.2	16.1	0.36	0.49	65.0
10a	L1	1	100.0	0.309	6.8	LOSA	2.2	16.1	0.36	0.49	57.7
11	T1	666	8.0	0.341	6.1	LOSA	2.6	19.1	0.35	0.51	66.5
12	R2	137	5.0	0.341	12.9	LOSA	2.6	19.1	0.35	0.51	59.1
Appro		1019	7.7	0.341	7.0	LOSA	2.6	19.1	0.35	0.50	65.1
All Ve	hicles	2887	5.6	0.756	8.9	LOSA	6.6	46.8	0.55	0.66	62.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:53:21 PM

Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 1 - Do Something\Do Something Stalker Road.sip7

Site: 101 [Stalker Road/SH6 IP Roundabout 2025]

New Site Roundabout

Move	ment Pe	rformance	e - Vehic	cles							
Mov	OD	Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued		Speed
South	: Stalker R	veh/h	%	v/c	sec		veh	m		per veh	km/h
1	L2	263	2.0	0.506	7.8	LOSA	3.2	22.4	0.81	0.94	52.3
2	T1	21	0.0	0.506	7.2	LOSA	3.2	22.4	0.81	0.94	54.2
- 3а	R1	1	100.0	0.506	17.2	LOS B	3.2	22.4	0.81	0.94	47.0
3	R2	49	0.0	0.506	13.3	LOSA	3.2	22.4	0.81	0.94	54.3
Appro		334	1.9	0.506	8.6	LOSA	3.2	22.4	0.81	0.94	52.7
	SH6 E			0.000	0.0		0. 2		0.0.	0.0.	0
4	L2	31	5.0	0.357	7.2	LOS A	2.4	18.4	0.60	0.61	54.8
5	T1	951	5.0	0.392	7.3	LOSA	3.0	20.8	0.58	0.58	67.4
6	R2	41	5.0	0.392	13.9	LOSA	3.0	20.8	0.57	0.56	58.5
6b	R3	1	100.0	0.392	17.4	LOS A	3.0	20.8	0.57	0.56	59.1
		1024	5.1				3.0	20.8			
Appro			5.1	0.392	7.6	LOSA	3.0	20.0	0.58	0.58	66.5
	East: Bus l										
24b	L3	1	100.0	0.011	10.1	LOSA	0.0	0.6	0.68	0.71	42.5
24a	L1	1	100.0	0.011	8.9	LOSA	0.0	0.6	0.68	0.71	44.6
26a	R1	1	100.0	0.011	14.5	LOSA	0.0	0.6	0.68	0.71	43.3
26b	R3	1	100.0	0.011	16.6	LOS B	0.0	0.6	0.68	0.71	46.5
Appro	ach	4	100.0	0.011	12.5	LOSA	0.0	0.6	0.68	0.71	44.1
North:	Lower Sh	otover Roa	d								
7b	L3	1	100.0	0.294	13.0	LOS A	1.4	9.9	0.68	0.87	50.8
7	L2	26	5.0	0.294	8.8	LOS A	1.4	9.9	0.68	0.87	59.6
8	T1	38	0.0	0.294	9.1	LOSA	1.4	9.9	0.68	0.87	53.9
9	R2	153	5.0	0.294	16.2	LOS B	1.4	9.9	0.68	0.87	61.7
Appro	ach	218	4.6	0.294	14.0	LOSA	1.4	9.9	0.68	0.87	59.9
West:	SH6 W										
10	L2	187	8.0	0.346	5.9	LOS A	2.4	18.3	0.36	0.49	64.9
10a	L1	1	100.0	0.346	6.8	LOSA	2.4	18.3	0.36	0.49	57.7
11	T1	795	8.0	0.382	6.1	LOSA	2.9	21.6	0.35	0.50	66.5
12	R2	169	5.0	0.382	12.9	LOSA	2.9	21.6	0.34	0.52	59.0
Appro	ach	1152	7.6	0.382	7.1	LOS A	2.9	21.6	0.35	0.50	65.0
All Vel	hicles	2732	5.9	0.506	8.0	LOSA	3.2	22.4	0.52	0.62	63.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:53:22 PM

Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 1 - Do Something\Do Something Stalker Road.sip7

Site: 101 [Stalker Road/SH6 PM Roundabout 2025]

New Site Roundabout

Move	ement Pe	rformance	e - Vehic	les	_				_	_	_
Mov	OD	Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	: Stalker F	veh/h Road	%	v/c	sec		veh	m		per veh	km/h
1	L2	217	2.0	0.474	7.7	LOS A	2.9	20.7	0.82	0.95	52.1
2	T1	18	0.0	0.474	7.1	LOS A	2.9	20.7	0.82	0.95	54.0
3a	R1	1	100.0	0.474	17.2	LOS B	2.9	20.7	0.82	0.95	46.8
3	R2	56	0.0	0.474	13.3	LOS A	2.9	20.7	0.82	0.95	54.1
Appro	ach	292	1.8	0.474	8.8	LOS A	2.9	20.7	0.82	0.95	52.6
	SH6 E										
4	L2	28	5.0	0.395	8.1	LOSA	2.8	21.4	0.71	0.68	54.2
5	T1	975	5.0	0.435	8.0	LOSA	3.6	25.0	0.70	0.64	66.5
6	R2	28	5.0	0.435	14.6	LOS B	3.6	25.0	0.70	0.61	57.8
6b	R3	1	100.0	0.435	18.5	LOS B	3.6	25.0	0.70	0.61	58.4
Appro		1032	5.1	0.435	8.2	LOS A	3.6	25.0	0.70	0.64	65.8
	East: Bus										
24b	L3	1	100.0	0.016	15.4	LOS B	0.1	0.8	0.79	0.81	40.1
24a	L1	1	100.0	0.016	14.2	LOSA	0.1	0.8	0.79	0.81	42.0
26a	R1	1	100.0	0.016	19.8	LOS B	0.1	0.8	0.79	0.81	40.8
26b	R3	1	100.0	0.016	21.9	LOS B	0.1	0.8	0.79	0.81	43.7
Appro		4	100.0	0.016	17.8	LOS B	0.1	0.8	0.79	0.81	41.6
		notover Roa	ad.								
7b	L3	1	100.0	0.477	18.0	LOS B	2.8	20.5	0.82	0.99	48.9
7	L2	38	5.0	0.477	12.4	LOSA	2.8	20.5	0.82	0.99	57.0
8	T1	65	0.0	0.477	12.7	LOSA	2.8	20.5	0.82	0.99	51.7
9	R2	184	5.0	0.477	19.8	LOS B	2.8	20.5	0.82	0.99	58.9
Appro		288	4.2	0.477	17.2	LOS B	2.8	20.5	0.82	0.99	56.8
	SH6 W										
10	L2	200	8.0	0.460	6.0	LOSA	3.8	28.6	0.40	0.48	64.6
10a	L1	1	100.0	0.460	6.9	LOSA	3.8	28.6	0.40	0.48	57.4
11	T1	1099	8.0	0.508	6.2	LOSA	4.6	34.4	0.39	0.50	66.2
12	R2	239	5.0	0.508	13.0	LOSA	4.6	34.4	0.38	0.52	58.7
Appro		1539	7.6	0.508	7.2	LOSA	4.6	34.4	0.39	0.50	64.7
All Ve	hicles	3155	6.0	0.508	8.6	LOSA	4.6	34.4	0.57	0.63	62.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

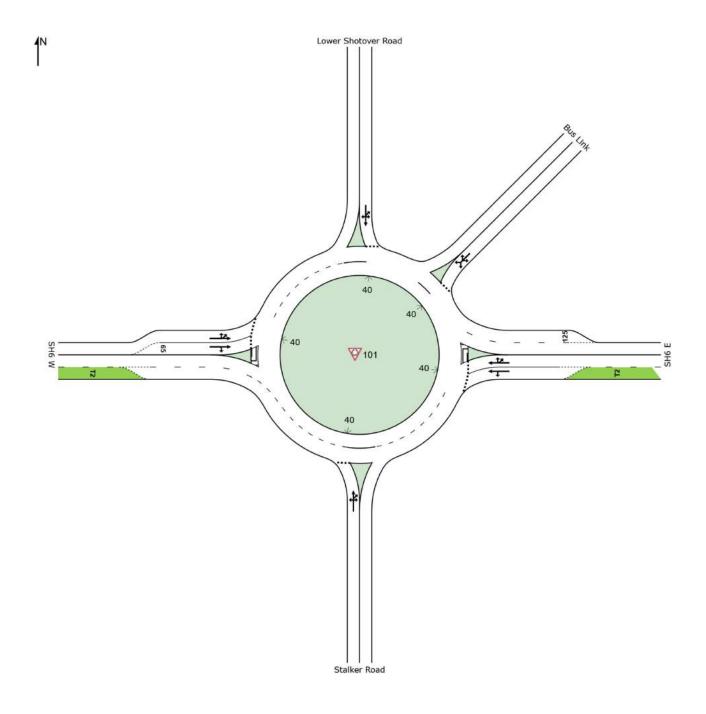
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:53:23 PM


Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 1 - Do Something\Do Something Stalker Road.sip7

SITE LAYOUT

Roundabout

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Created: Thursday, 28 June 2018 1:32:41 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 1 - Do Something\Do Something Stalker Road.sip7

New Site Roundabout

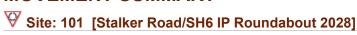
Move	ment Pe	rformance	e - Vehic	les		_		_	_	_	_
Mov	OD	Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	: Stalker F	veh/h Road	%	v/c	sec		veh	m		per veh	km/h
1	L2	309	2.0	0.686	12.6	LOS A	5.3	37.9	0.90	1.11	49.0
2	T1	30	0.0	0.686	12.0	LOS A	5.3	37.9	0.90	1.11	50.7
3a	R1	1	100.0	0.686	23.0	LOS B	5.3	37.9	0.90	1.11	44.3
3	R2	56	0.0	0.686	18.1	LOS B	5.3	37.9	0.90	1.11	50.8
Appro	ach	396	1.8	0.686	13.4	LOS A	5.3	37.9	0.90	1.11	49.4
East:	SH6 E										
4	L2	44	5.0	0.426	7.2	LOS A	3.0	23.3	0.61	0.60	54.7
5	T1	1165	5.0	0.469	7.2	LOS A	3.8	26.4	0.59	0.58	67.4
6	R2	41	5.0	0.469	13.9	LOS A	3.8	26.4	0.58	0.56	58.4
6b	R3	1	100.0	0.469	17.4	LOS B	3.8	26.4	0.58	0.56	59.1
Appro	ach	1251	5.1	0.469	7.5	LOSA	3.8	26.4	0.59	0.58	66.5
North	East: Bus	Link									
24b	L3	1	100.0	0.011	9.9	LOS A	0.0	0.6	0.68	0.70	42.6
24a	L1	1	100.0	0.011	8.6	LOS A	0.0	0.6	0.68	0.70	44.7
26a	R1	1	100.0	0.011	14.2	LOS A	0.0	0.6	0.68	0.70	43.4
26b	R3	1	100.0	0.011	16.3	LOS B	0.0	0.6	0.68	0.70	46.6
Appro	ach	4	100.0	0.011	12.2	LOS A	0.0	0.6	0.68	0.70	44.3
North:	Lower Sh	otover Roa	ıd								
7b	L3	1	100.0	0.267	12.7	LOS A	1.2	9.1	0.67	0.88	50.7
7	L2	21	5.0	0.267	8.6	LOS A	1.2	9.1	0.67	0.88	59.4
8	T1	22	0.0	0.267	8.9	LOS A	1.2	9.1	0.67	0.88	53.7
9	R2	155	5.0	0.267	16.0	LOS B	1.2	9.1	0.67	0.88	61.4
Appro	ach	199	4.9	0.267	14.4	LOS A	1.2	9.1	0.67	0.88	60.1
West:	SH6 W										
10	L2	241	8.0	0.351	6.0	LOS A	2.5	19.0	0.39	0.50	64.8
10a	L1	1	100.0	0.351	7.0	LOS A	2.5	19.0	0.39	0.50	57.6
11	T1	760	8.0	0.387	6.2	LOS A	3.0	22.6	0.38	0.51	66.4
12	R2	147	5.0	0.387	13.0	LOS A	3.0	22.6	0.37	0.52	59.0
Appro	ach	1149	7.7	0.387	7.0	LOSA	3.0	22.6	0.38	0.51	65.0
All Ve	hicles	2999	5.8	0.686	8.5	LOSA	5.3	37.9	0.56	0.64	62.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.


Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

 ${\bf SIDRA~INTERSECTION~7.0~|~Copyright~@~2000-2017~Akcelik~and~Associates~Pty~Ltd~|~sidrasolutions.com~accellations.}$

Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:53:24 PM

Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 1 - Do Something\Do Something Stalker Road.sip7

New Site Roundabout

Mover	ment Pe	rformance	e - Vehic	les							
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/h
South:	Stalker F	Road	/0	V/C	300		VCII			per veri	KITI/TI
1	L2	244	2.0	0.509	8.3	LOSA	3.2	22.7	0.83	0.96	51.8
2	T1	22	0.0	0.509	7.7	LOSA	3.2	22.7	0.83	0.96	53.8
3a	R1	1	100.0	0.509	17.9	LOS B	3.2	22.7	0.83	0.96	46.6
3	R2	52	0.0	0.509	13.8	LOSA	3.2	22.7	0.83	0.96	53.9
Approa	ach	319	1.8	0.509	9.2	LOSA	3.2	22.7	0.83	0.96	52.3
East: S	SH6 E										
4	L2	33	5.0	0.385	7.2	LOSA	2.6	20.4	0.61	0.61	54.7
5	T1	1025	5.0	0.423	7.3	LOSA	3.3	23.2	0.60	0.58	67.3
6	R2	46	5.0	0.423	14.0	LOSA	3.3	23.2	0.59	0.57	58.4
6b	R3	1	100.0	0.423	17.4	LOS B	3.3	23.2	0.59	0.57	59.0
Approa	ach	1105	5.1	0.423	7.6	LOSA	3.3	23.2	0.60	0.58	66.4
NorthE	ast: Bus	Link									
24b	L3	1	100.0	0.012	10.7	LOSA	0.0	0.6	0.70	0.73	42.2
24a	L1	1	100.0	0.012	9.5	LOSA	0.0	0.6	0.70	0.73	44.3
26a	R1	1	100.0	0.012	15.0	LOS B	0.0	0.6	0.70	0.73	43.0
26b	R3	1	100.0	0.012	17.1	LOS B	0.0	0.6	0.70	0.73	46.2
Approa	ach	4	100.0	0.012	13.1	LOSA	0.0	0.6	0.70	0.73	43.9
North:	Lower Sh	otover Roa	nd								
7b	L3	1	100.0	0.310	13.4	LOSA	1.5	10.7	0.70	0.88	50.7
7	L2	26	5.0	0.310	9.0	LOSA	1.5	10.7	0.70	0.88	59.5
8	T1	43	0.0	0.310	9.3	LOSA	1.5	10.7	0.70	0.88	53.8
9	R2	153	5.0	0.310	16.4	LOS B	1.5	10.7	0.70	0.88	61.5
Approa	ach	223	4.5	0.310	14.2	LOSA	1.5	10.7	0.70	0.88	59.6
West: S	SH6 W										
10	L2	210	8.0	0.368	6.0	LOSA	2.7	19.9	0.38	0.49	64.8
10a	L1	1	100.0	0.368	6.9	LOSA	2.7	19.9	0.38	0.49	57.6
11	T1	849	8.0	0.406	6.2	LOSA	3.2	23.6	0.37	0.51	66.5
12	R2	158	5.0	0.406	13.0	LOSA	3.2	23.6	0.36	0.51	59.0
Approa	ach	1218	7.7	0.406	7.0	LOSA	3.2	23.6	0.37	0.51	65.1
All Veh	nicles	2869	5.9	0.509	8.0	LOSA	3.3	23.6	0.53	0.62	63.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:53:25 PM

Site: 101 [Stalker Road/SH6 PM Roundabout 2028]

New Site Roundabout

Move	ment Pe	rformance	e - Vehic	cles							
Mov	OD	Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	: Stalker F	veh/h Road	%	v/c	sec		veh	m		per veh	km/h
1	L2	234	2.0	0.577	10.4	LOS A	3.9	28.0	0.89	1.03	50.2
2	T1	19	0.0	0.577	9.8	LOS A	3.9	28.0	0.89	1.03	52.0
3a	R1	1	100.0	0.577	20.5	LOS B	3.9	28.0	0.89	1.03	45.3
3	R2	60	0.0	0.577	16.0	LOS B	3.9	28.0	0.89	1.03	52.1
Appro	ach	314	1.8	0.577	11.5	LOS A	3.9	28.0	0.89	1.03	50.7
East:	SH6 E										
4	L2	33	5.0	0.457	8.1	LOS A	3.4	26.0	0.73	0.68	54.1
5	T1	1114	5.0	0.502	8.0	LOS A	4.3	30.5	0.72	0.64	66.2
6	R2	60	5.0	0.502	14.6	LOS B	4.3	30.5	0.72	0.62	57.5
6b	R3	1	100.0	0.502	18.5	LOS B	4.3	30.5	0.72	0.62	58.2
Appro	ach	1208	5.1	0.502	8.4	LOSA	4.3	30.5	0.72	0.64	65.3
North	East: Bus	Link									
24b	L3	1	100.0	0.017	16.0	LOS B	0.1	0.9	0.80	0.81	39.9
24a	L1	1	100.0	0.017	14.8	LOS B	0.1	0.9	0.80	0.81	41.7
26a	R1	1	100.0	0.017	20.3	LOS B	0.1	0.9	0.80	0.81	40.6
26b	R3	1	100.0	0.017	22.4	LOS B	0.1	0.9	0.80	0.81	43.4
Appro	ach	4	100.0	0.017	18.3	LOS B	0.1	0.9	0.80	0.81	41.4
North:	Lower Sh	otover Roa	ıd								
7b	L3	1	100.0	0.506	18.6	LOS B	3.1	22.7	0.83	1.00	48.6
7	L2	38	5.0	0.506	12.9	LOS A	3.1	22.7	0.83	1.00	56.7
8	T1	73	0.0	0.506	13.2	LOS A	3.1	22.7	0.83	1.00	51.4
9	R2	184	5.0	0.506	20.3	LOS B	3.1	22.7	0.83	1.00	58.5
Appro	ach	296	4.1	0.506	17.6	LOS B	3.1	22.7	0.83	1.00	56.3
West:	SH6 W										
10	L2	225	8.0	0.477	6.2	LOS A	3.9	29.0	0.46	0.52	64.2
10a	L1	1	100.0	0.477	7.4	LOS A	3.9	29.0	0.46	0.52	57.1
11	T1	1127	8.0	0.526	6.4	LOSA	4.7	34.9	0.45	0.53	65.9
12	R2	203	5.0	0.526	13.1	LOS A	4.7	34.9	0.44	0.53	58.6
Appro	ach	1556	7.7	0.526	7.3	LOSA	4.7	34.9	0.45	0.53	64.6
All Ve	hicles	3378	6.0	0.577	9.0	LOSA	4.7	34.9	0.62	0.66	62.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

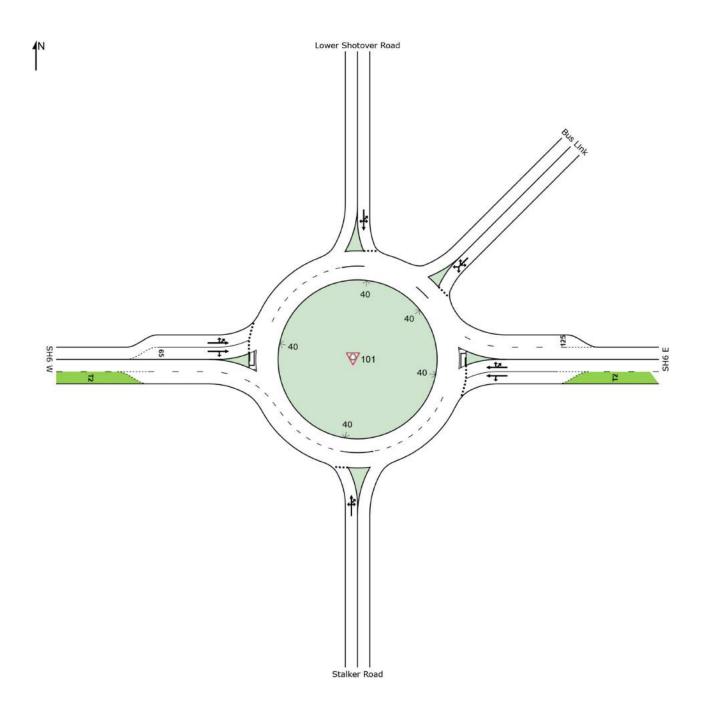
Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:53:26 PM

Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 1 - Do Something\Do Something Stalker Road.sip7

SITE LAYOUT

Site: 101 [Stalker Road/SH6 AM Roundabout 2028]

Roundabout

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Created: Thursday, 28 June 2018 1:32:41 PM
Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 1 - Do Something\Do Something Stalker Road.sip7

New Site Roundabout

Move	ment Pe	rformance	e - Vehic	les							
Mov	OD		d Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	: Stalker F	veh/h	%	v/c	sec		veh	m		per veh	km/h
1	L2	210	2.0	0.598	12.3	LOS A	4.2	29.8	0.90	1.07	49.0
2	T1	34	0.0	0.598	11.7	LOSA	4.2	29.8	0.90	1.07	50.7
2 3a	R1	1	100.0	0.598	22.9	LOS B	4.2	29.8	0.90	1.07	44.3
3	R2	58	0.0	0.598	17.9	LOS B	4.2	29.8	0.90	1.07	50.8
Appro		303	1.7	0.598	13.4	LOSA	4.2	29.8	0.90	1.07	49.5
		300	1.7	0.000	10.4	LOOK	7.2	20.0	0.50	1.07	40.0
East: \$											
4	L2	45	5.0	0.482	7.5	LOSA	3.6	28.1	0.68	0.63	54.3
5	T1	1252	5.0	0.530	7.6	LOSA	4.6	32.5	0.67	0.60	66.7
6	R2	63	5.0	0.530	14.2	LOSA	4.6	32.5	0.66	0.59	57.9
6b	R3	1	100.0	0.530	17.9	LOS B	4.6	32.5	0.66	0.59	58.5
Appro	ach	1361	5.1	0.530	7.9	LOSA	4.6	32.5	0.67	0.61	65.7
North	East: Bus	Link									
24b	L3	1	100.0	0.014	13.5	LOS A	0.1	8.0	0.76	0.77	40.9
24a	L1	1	100.0	0.014	12.3	LOSA	0.1	8.0	0.76	0.77	42.9
26a	R1	1	100.0	0.014	17.8	LOS B	0.1	8.0	0.76	0.77	41.7
26b	R3	1	100.0	0.014	19.9	LOS B	0.1	0.8	0.76	0.77	44.6
Appro	ach	4	100.0	0.014	15.9	LOS B	0.1	0.8	0.76	0.77	42.5
North:	Lower Sh	notover Roa	ad								
7b	L3	1	100.0	0.398	15.9	LOS B	2.2	16.3	0.79	0.96	49.4
7	L2	31	5.0	0.398	10.9	LOSA	2.2	16.3	0.79	0.96	57.7
8	T1	30	0.0	0.398	11.2	LOSA	2.2	16.3	0.79	0.96	52.3
9	R2	187	5.0	0.398	18.3	LOS B	2.2	16.3	0.79	0.96	59.6
Appro	ach	249	4.8	0.398	16.5	LOS B	2.2	16.3	0.79	0.96	58.3
	SH6 W										
10	L2	343	8.0	0.461	6.3	LOSA	3.7	27.5	0.48	0.54	64.3
10a	L1	1	100.0	0.461	7.5	LOSA	3.7	27.5	0.48	0.54	57.2
11	T1	991	8.0	0.509	6.4	LOSA	4.5	33.2	0.46	0.53	65.9
12	R2	150	5.0	0.509	13.2	LOSA	4.5	33.2	0.46	0.53	58.7
Appro		1485	7.8	0.509	7.1	LOSA	4.5	33.2	0.46	0.53	64.7
All Vel	hicles	3402	6.0	0.598	8.7	LOSA	4.6	33.2	0.61	0.64	62.9
All vel	IICIES	3402	0.0	0.590	0.7	LUSA	4.0	33.2	0.01	0.04	02.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

 ${\bf SIDRA~INTERSECTION~7.0~|~Copyright~@~2000-2017~Akcelik~and~Associates~Pty~Ltd~|~sidrasolutions.com~accellations~accel$

Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:53:27 PM

New Site Roundabout

Move	ment Pe	rformanc		les							
Mov	OD	Deman	d Flows	Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/h
South	: Stalker F	Road	70	V/C	360		Ven			per veri	KIII/II
1	L2	202	2.0	0.560	11.5	LOSA	3.8	26.7	0.89	1.04	49.5
2	T1	25	0.0	0.560	10.9	LOSA	3.8	26.7	0.89	1.04	51.3
3a	R1	1	100.0	0.560	22.1	LOS B	3.8	26.7	0.89	1.04	44.7
3	R2	53	0.0	0.560	17.1	LOS B	3.8	26.7	0.89	1.04	51.4
Appro	ach	281	1.8	0.560	12.6	LOSA	3.8	26.7	0.89	1.04	50.0
East:	SH6 E										
4	L2	35	5.0	0.485	7.6	LOSA	3.7	28.6	0.69	0.64	54.3
5	T1	1258	5.0	0.533	7.6	LOSA	4.7	33.1	0.68	0.61	66.6
6	R2	69	5.0	0.533	14.2	LOS A	4.7	33.1	0.67	0.59	57.8
6b	R3	1	100.0	0.533	17.9	LOS B	4.7	33.1	0.67	0.59	58.5
Appro	ach	1363	5.1	0.533	7.9	LOSA	4.7	33.1	0.68	0.61	65.7
North	East: Bus	Link									
24b	L3	1	100.0	0.014	12.8	LOSA	0.1	0.7	0.75	0.76	41.2
24a	L1	1	100.0	0.014	11.6	LOSA	0.1	0.7	0.75	0.76	43.2
26a	R1	1	100.0	0.014	17.2	LOS B	0.1	0.7	0.75	0.76	42.0
26b	R3	1	100.0	0.014	19.3	LOS B	0.1	0.7	0.75	0.76	45.0
Appro	ach	4	100.0	0.014	15.2	LOS B	0.1	0.7	0.75	0.76	42.8
North:	Lower Sh	notover Roa	ad								
7b	L3	1	100.0	0.416	15.5	LOS B	2.3	17.0	0.77	0.95	49.9
7	L2	35	5.0	0.416	10.6	LOSA	2.3	17.0	0.77	0.95	58.4
8	T1	57	0.0	0.416	10.9	LOSA	2.3	17.0	0.77	0.95	52.9
9	R2	184	5.0	0.416	18.0	LOS B	2.3	17.0	0.77	0.95	60.4
Appro	ach	277	4.3	0.416	15.6	LOS B	2.3	17.0	0.77	0.95	58.4
West:	SH6 W										
10	L2	300	8.0	0.426	6.2	LOSA	3.2	24.1	0.44	0.52	64.5
10a	L1	1	100.0	0.426	7.4	LOSA	3.2	24.1	0.44	0.52	57.3
11	T1	953	8.0	0.470	6.4	LOSA	3.9	29.0	0.43	0.52	66.2
12	R2	130	5.0	0.470	13.1	LOSA	3.9	29.0	0.42	0.52	59.0
Appro	ach	1384	7.8	0.470	7.0	LOSA	3.9	29.0	0.43	0.52	65.1
All Vel	hicles	3309	6.0	0.560	8.6	LOSA	4.7	33.1	0.60	0.64	63.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:53:29 PM

Project: G:\Other_Clients\Queenstown Lakes District Council\Ladies Mile ITA\SIDRA\Option 1 - Do Something\Do Something Stalker Road.sip7

New Site Roundabout

Movement Performance - Vehicles											
Mov	OD	Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	: Stalker F	veh/h Road	%	v/c	sec		veh	m		per veh	km/h
1	L2	239	2.0	0.944	49.8	LOS D	11.9	84.5	1.00	1.59	32.9
2	T1	21	0.0	0.944	49.2	LOS D	11.9	84.5	1.00	1.59	33.6
3a	R1	1	100.0	0.944	62.6	LOS E	11.9	84.5	1.00	1.59	30.7
3	R2	61	0.0	0.944	55.3	LOS D	11.9	84.5	1.00	1.59	33.7
Appro	ach	322	1.8	0.944	50.9	LOS D	11.9	84.5	1.00	1.59	33.1
Fast	SH6 E										
4	L2	34	5.0	0.643	10.3	LOS A	6.6	50.8	0.86	0.87	53.3
5	 T1	1545	5.0	0.707	10.1	LOSA	9.4	65.8	0.86	0.82	65.0
6	R2	90	5.0	0.707	16.6	LOS B	9.4	65.8	0.86	0.80	56.6
6b	R3	1	100.0	0.707	20.9	LOS B	9.4	65.8	0.86	0.80	57.2
Appro	ach	1670	5.1	0.707	10.5	LOS A	9.4	65.8	0.86	0.82	64.2
North	NorthEast: Bus Link										
24b	L3		100.0	0.018	18.3	LOS B	0.1	1.0	0.82	0.83	38.9
24a	L1	1	100.0	0.018	17.1	LOS B	0.1	1.0	0.82	0.83	40.7
26a	R1	1	100.0	0.018	22.6	LOS B	0.1	1.0	0.82	0.83	39.6
26b	R3	1	100.0	0.018	24.7	LOS B	0.1	1.0	0.82	0.83	42.3
Appro	ach	4	100.0	0.018	20.7	LOS B	0.1	1.0	0.82	0.83	40.4
North: Lower Shotover Road											
7b	L3	1	100.0	0.636	21.3	LOS B	4.7	34.1	0.89	1.07	47.2
7	L2	46	5.0	0.636	15.4	LOS B	4.7	34.1	0.89	1.07	54.8
8	T1	97	0.0	0.636	15.6	LOS B	4.7	34.1	0.89	1.07	49.9
9	R2	223	5.0	0.636	22.8	LOS B	4.7	34.1	0.89	1.07	56.5
Appro	ach	367	3.9	0.636	20.0	LOS B	4.7	34.1	0.89	1.07	54.3
West: SH6 W											
10	L2	323	8.0	0.499	6.5	LOS A	4.1	30.4	0.51	0.55	64.0
10a	L1	1	100.0	0.499	7.9	LOS A	4.1	30.4	0.51	0.55	56.9
11	T1	1127	8.0	0.550	6.6	LOS A	5.0	37.0	0.50	0.54	65.8
12	R2	139	5.0	0.550	13.3	LOS A	5.0	37.0	0.49	0.54	58.6
Appro	ach	1590	7.8	0.550	7.1	LOSA	5.0	37.0	0.50	0.54	64.7
All Ve	hicles	3953	5.9	0.944	13.3	LOSA	11.9	84.5	0.73	0.79	58.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 \mid Copyright © 2000-2017 Akcelik and Associates Pty Ltd \mid sidrasolutions.com

Organisation: OPUS INTERNATIONAL CONSULTANTS LTD | Processed: Tuesday, 26 June 2018 3:53:30 PM

12 Appendix C - Economic Evaluation

1.1 Assumptions

The following assumptions have been made in the economics analysis:

- Time zero of 1 July 2018
- Earliest construction start is in FY2019/20
- Construction period of 8 months
- Discount period of 40 years with 6% discount factor
- Travel time costs have been taken from Table A4.1(a) of the EEM using the "base values of time for uncongested traffic", and Table A4.2 for vehicle and freight travel times.
- Due to the high-level nature of this assessment, vehicle Operating Cost (VOC) and Carbon Dioxide (CO2) costs savings have not been calculated.
- Due to the high-level nature of this assessment, periodic maintenance costs have not been calculated.
- Due to the high-level nature of this assessment, walking and cycling benefits have not been calculated.
- The assumed proportion of high occupancy vehicle (>1 person/vehicle) is 25% of overall traffic, based on a recent occupancy survey at Lower Shotover Bridge
- The expected mode shift between private car to public transport for each programme is as discussed in Section on Modelling
- Bus service frequency for year 0 is as per the current service frequency along SH6, which is approximately 2 buses/hr in each direction in the peak periods. The Do Minimum scenario in both programmes assumes a bus service frequency of 4 buses/hr in each direction along SH6 in peak periods.
- The assumed bus service frequency along SH6 for the Do Something scenario in each programme is based on the estimated mode shift to public transport for each programme. For Programme 1, the estimated peak hour bus service is 8 buses in each direction, and for Programme 2, the estimated peak hour bus service is 13 buses in each direction.
- Due to the high-level nature of this assessment, no further background traffic growth beyond the
 completed year of each programme has been considered. Side road traffic volumes are expected to
 stay reasonably constant without further development. State Highway 6 traffic volumes are
 constrained by the capacity of the highway upstream and downstream, so cannot grow significantly
 higher.
- All movement delays are capped at 300 seconds, to reflect drivers rerouting or changing travel behaviour once delays become excessive.
- The annual peak periods included in the analysis are AM (490hrs/year), IP (1715 hrs/year), PM (490hrs/year)
- No sensitivity tests have been undertaken

1.2 Economic Evaluations

Programme 1

Worksheet 1: Evaluation summary

Evaluation summary	
(1) Evaluator(s)	Gabriela Surja
Reviewer(s)	Chris Morahan
(2) Project/package details	
Approved organisation name	WSP Opus
Project/package name	Ladies Mile Housing Infrastructure Fund
Your reference	
Project description	Programme 1 : Developing 450 lots in the area to the North of SH6 between Howards Drive and Stalker Road. Access via new intersection at the Howards Drive junction
	The need to address the potential adverse transport
	effects caused by the development, and to identify a
Describe the predominant type of problem (3) Location	sustainable access strategy for the Ladies Mile site.
	SH6 between Stalker Rd/Lower Shotover Rd and
Brief description of location (4) Alternatives and options	McDowell Dr
Describe the do minimum	The minimum transport corridor improvements needed to accommodate 450 new residential houses to the north of SH6 between Howards Dr and Stalker Rd. This includes maintaining the existing Stalker Rd roundabout and creating a new northern priority at Howards Drive. Creating a new roundabout intersection at Howards
Summarise the options assessed	Drive, installing a westbound T2 lane along the corridor, and implementing a P&R facility east of the project area.
(5) Timing	and impressioning a contracting project area.
Earliest construction start date (mm/yyyy)	01/07/2019
Expected construction start date (mm/yyyy)	01/07/2019
Expected duration of construction (months)	8
(6) Economic efficiency	
Date economic evaluation completed (mm/yyyy)	
Time zero	01/07/2018
Base date for costs and benefits	01/07/2017
PV cost of do minimum PV net cost of preferred option	\$0 \$4.914.286
PV net cost of preferred option PV net benefits of preferred option	\$10.653.275
(7) BCR	2.2
(8) FYRR	2%
(9) Non-monetised impacts	-
(10) National strategic factors	-

First edition Effective from July 2013

The NZ Transport Agency's Economic evaluation manual

Worksheet 3: Cost - Benefit Cost Analysis

1.	Project Options	Do Minimum	Do Something	Option Comparison
COS	STS:			Net Costs of the Project Options (\$)
2.	Capital Costs	\$485.849,06	\$5.400.115	\$4.914.266
3.	Maintenance Costs	\$157.374,93	\$157.375	\$0
4.	Operating Costs			\$0
5.	Total Costs (2) to (4)			\$4.914.266
BEN	IEFITS:			Net Benefits of the Project Options (\$
6.	Travel Time Costs	\$18.981.930	\$8.328.655	\$10.653.275
7.	Vehicle Operating Costs	\$0	\$0	\$0
8.	Carbon Dioxide	\$0	\$0	\$0
9.	Crash Costs	\$0	\$0	\$0
12	Total Benefits (6) to (10)			\$10.653.275
		·		
12	13 B/C Ratio (11) / (5)			2,17

The NZ Transport Agency's Economic evaluation manual

First edition, Amendment 1 Effective from 1 January 2016

Worksheet 1: Evaluation summary

(4)	Evaluation summary	Cabriala Suria
(1)	Evaluator(s) Reviewer(s)	Gabriela Surja Chris Morahan
(2)	Project/package details	Citia Werarian
	Approved organisation name	WSP Opus
	Project/package name Your reference	Ladies Mile House Infrastructure Fund
	Project description	Programme 2: Developing 750 lots in the area to the north of SH8 between Howards Dr and Stalker Dr plus area to east of Howards Dr and west of Stalker Rd.
	Describe the needed in setting of each less	The need to address the potential adverse transport effects caused by the development, and to identify a sustainanble access strategy for the Ladies Mile site
(3)	Describe the predominant type of problem Location	
(4)	Brief description of location Alternatives and options	SH6 between Stalker Rd/Lower Shotover Rd and McDowell Dr
	Describe the do minimum	The minimum transport corridor improvements needed to accommodate 750 new residential houses to the north of SH6 between Howards Dr and Stalker Rd. This includes maintaining the existing Stalker Rd roundabout and creating a new northern priority access at Howard Dr.
	Describe the do minimum	Creating a new roundabout at Howards Dr, installing westbound
	Summarise the options assessed	T2 lane along the corridor and a P&R facility east of the project area.
(5)	Timing	area.
,	Earliest construction start date (mm/yyyy)	01/07/2019
	Expected construction start date (mm/yyyy)	01/07/2019
	Expected duration of construction (months)	8
(6)	Economic efficiency	0510010040
	Date economic evaluation completed (mm/yyyy) Time zero	25/06/2018 01/07/2018
	Base date for costs and benefits	01/07/2017
	PV cost of do minimum	30
	PV net cost of preferred option	\$4.914.266
	PV net benefits of preferred option	\$13.529.384
	BCR	2,8
(8)	FYRR	2%
	Non-monetised impacts	
(10)	National strategic factors	<u> </u>

First edition Effective from July 2013

Worksheet 3: Cost - Benefit Cost Analysis

_				
1.	Project Options	Do Minimum	Do Something	Option Comparison
COS	STS:			Net Costs of the Project Options (\$)
2.	Capital Costs	\$485.849,06	\$5.400.115	\$4.914.266
3.	Maintenance Costs	\$157.374,93	\$157.375	\$0
4.	Operating Costs			\$0
5.	Total Costs (2) to (4)			\$4.914.266
BEN	IEFITS:			Net Benefits of the Project Options (\$)
6.	Travel Time Costs	\$22.503.883	\$8.974.519	\$13.529.364
7.	Vehicle Operating Costs	\$0	\$0	\$0
8.	Carbon Dioxide	\$0	\$0	\$0
9.	Crash Costs	\$0	\$0	\$0
12	Total Benefits (6) to (10)			\$13.529.364
13	B/C Ratio (11) / (5)			2,75

The NZ Transport Agency's Economic evaluation manual

First edition, Amendment 1 Effective from 1 January 2016

1.3 Construction Costs

Construction Cost for Economics

Stalker Rd	Construction Estimate Sept 2017	Construction Estimate Mar 2018 (*1.03)
Do Min (RAB without bus link)	. 0	\$ -
Do Something (RAB with bus link)	500000	\$ 515.000,00
Howards Rd		
Do Min : Staggered T-intersection	500000	\$ 515.000,00
Do Something : Roundabout	5057400	\$ 5.209.122,00

Maintenance Cost for Economics (based on RCME curve, Nov 2008, with index multiplier of 1.15 to update to Mar 2018 quarter)

	1			
				Maintenanc
	Maintenance Cost/km (based on			e Cost Mar
	RMCE) - based on 2lane, 2-way rural			2018
Stalker Rd	road (single lane each direction)	length of project	Lane multiplier	(*1.03)
Do Min (RAB without bus link)	2821	0,75	2	\$ 4.358,45
Do SOmething (RAB with bus link)	2821	1	2	\$ 5.811,26
Howards Rd				
Do Min Staggered T-intersection	2821	0,75	2	\$ 4.358,45
Do Something Roundabout	2821	0,75	2	\$ 4.358,45
Maintenance cost of Howards Rd T-				
junction (existing) - before staggered				
leg is constructed	2821	0,5	2	\$ 2.821,00

13 Appendix D - Designs

Roundabout Concept

DRAWING INDEX

SHEET# TITLE

GENERAL

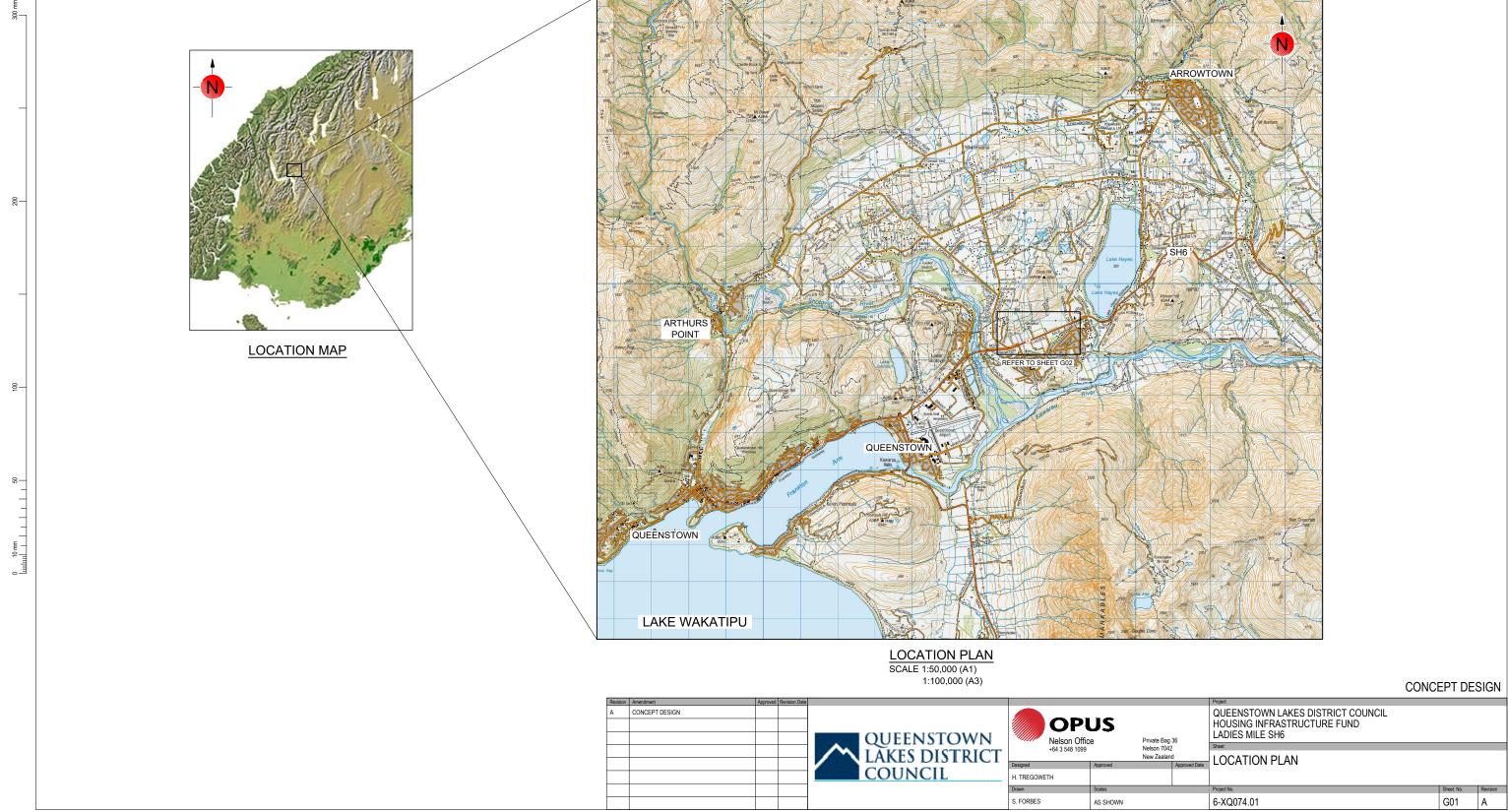
G00 COVER SHEET / DRAWING INDEX

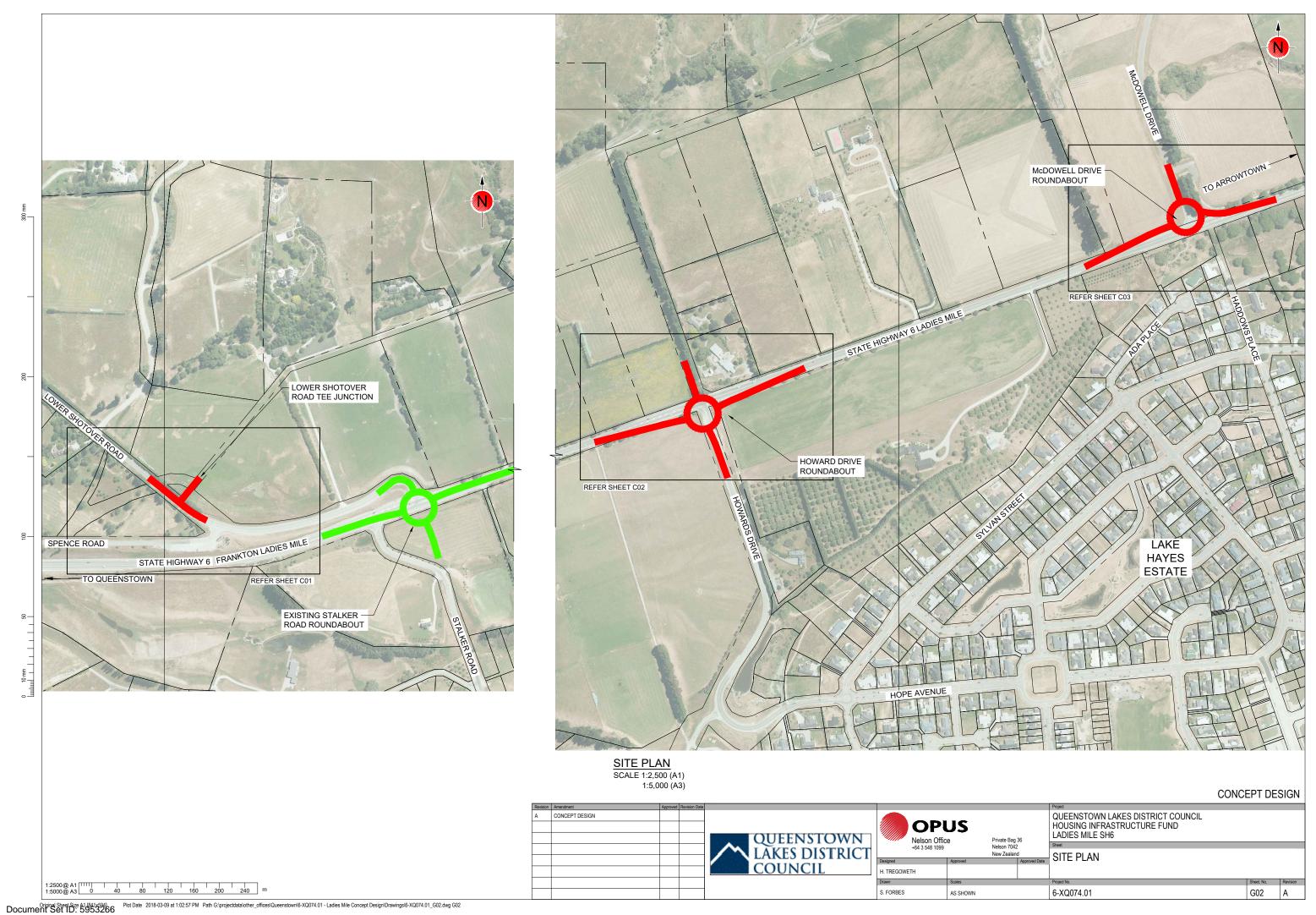
G01 LOCATION PLAN G02 SITE LAYOUT PLAN

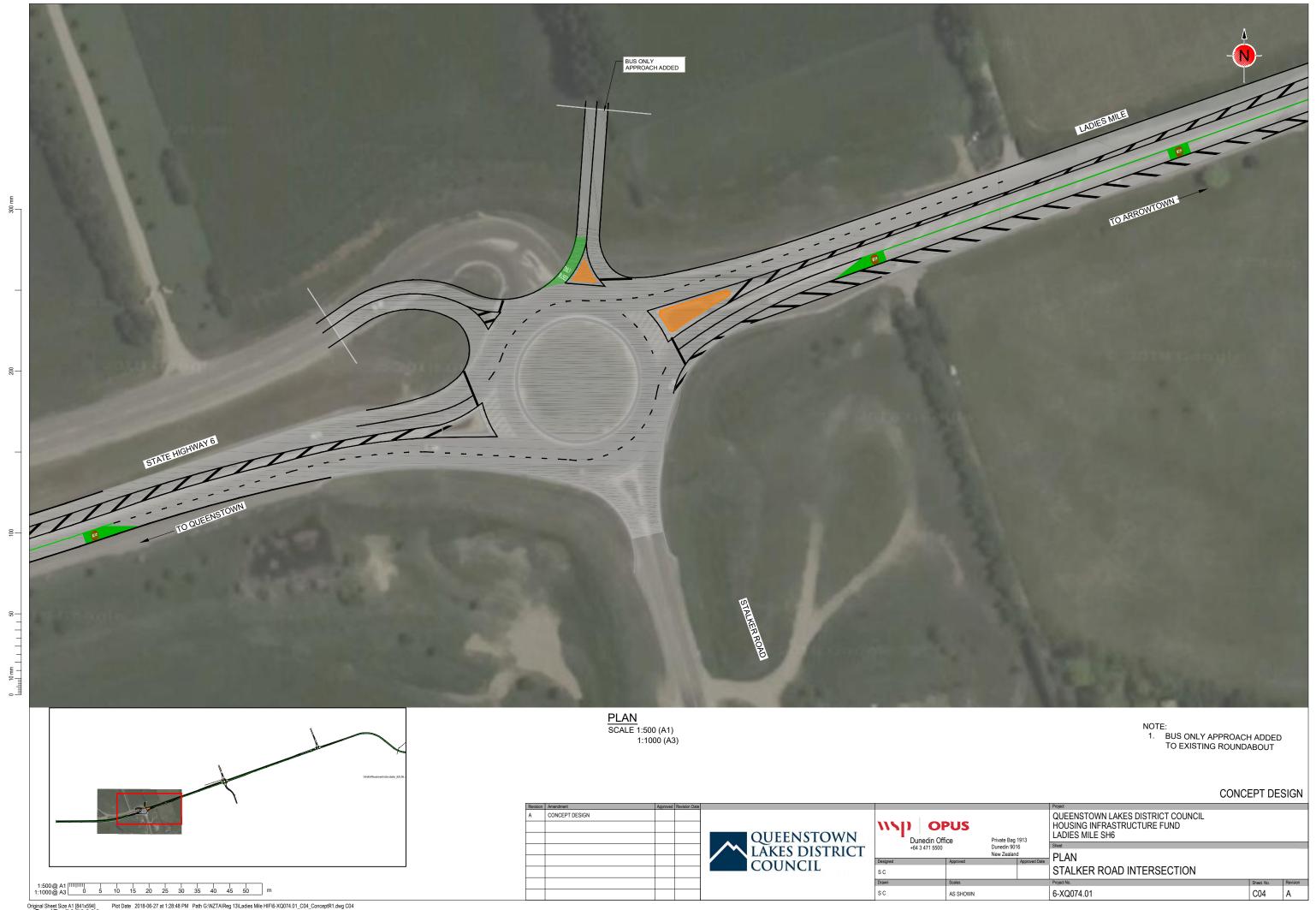
RISING MAIN

C01	LOWER SHOTOVER ROAD T JUNCTION PLAN
C02.1	HOWARD DRIVE ROUNDABOUT PLAN - OPTION 1
C02.2	HOWARD DRIVE ROUNDABOUT PLAN - OPTION 2
C02.3	HOWARD DRIVE ROUNDABOUT PLAN - OPTION 3
C03	McDOWELL DRIVE ROUNDABOUT PLAN

QUEENSTOWN LAKES DISTRICT COUNCIL HOUSING INFRASTRUCTURE FUND LADIES MILE SH6

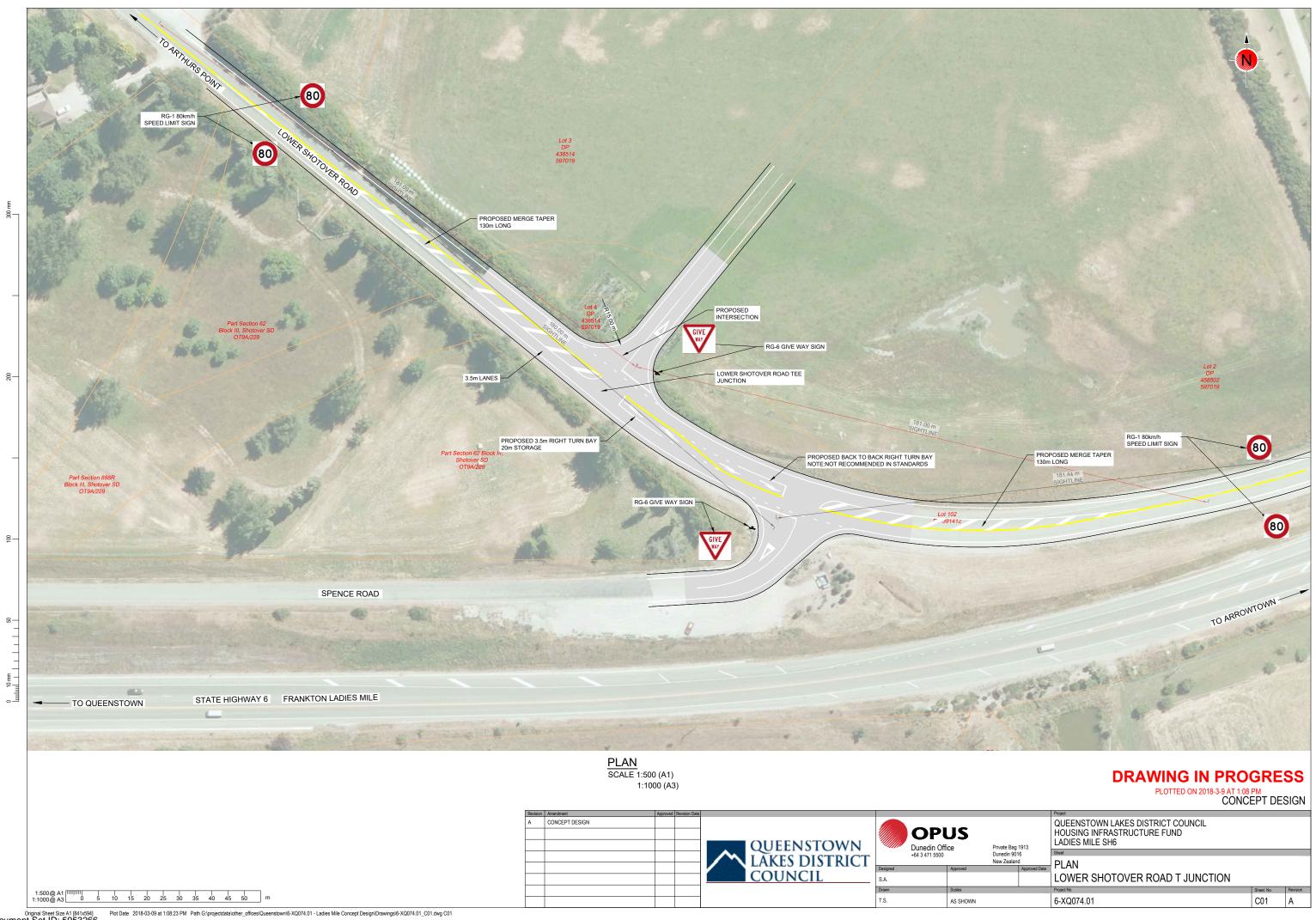

CONCEPT DESIGN

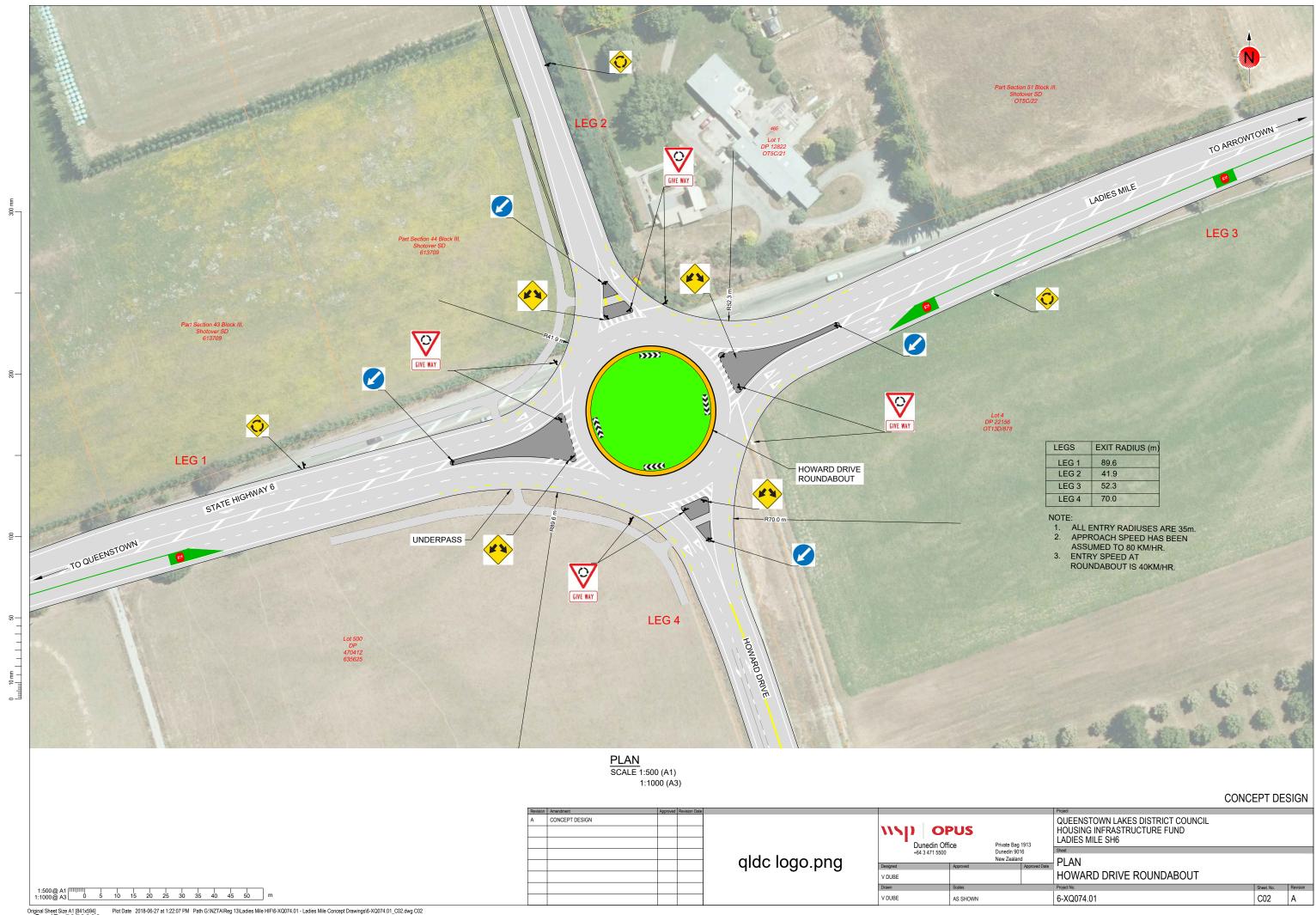

Project No: 6-XQ074.01


Date: MARCH 2018

QUEENSTOWN LAKES DISTRICT COUNCIL HOUSING INFRASTRUCTURE FUND

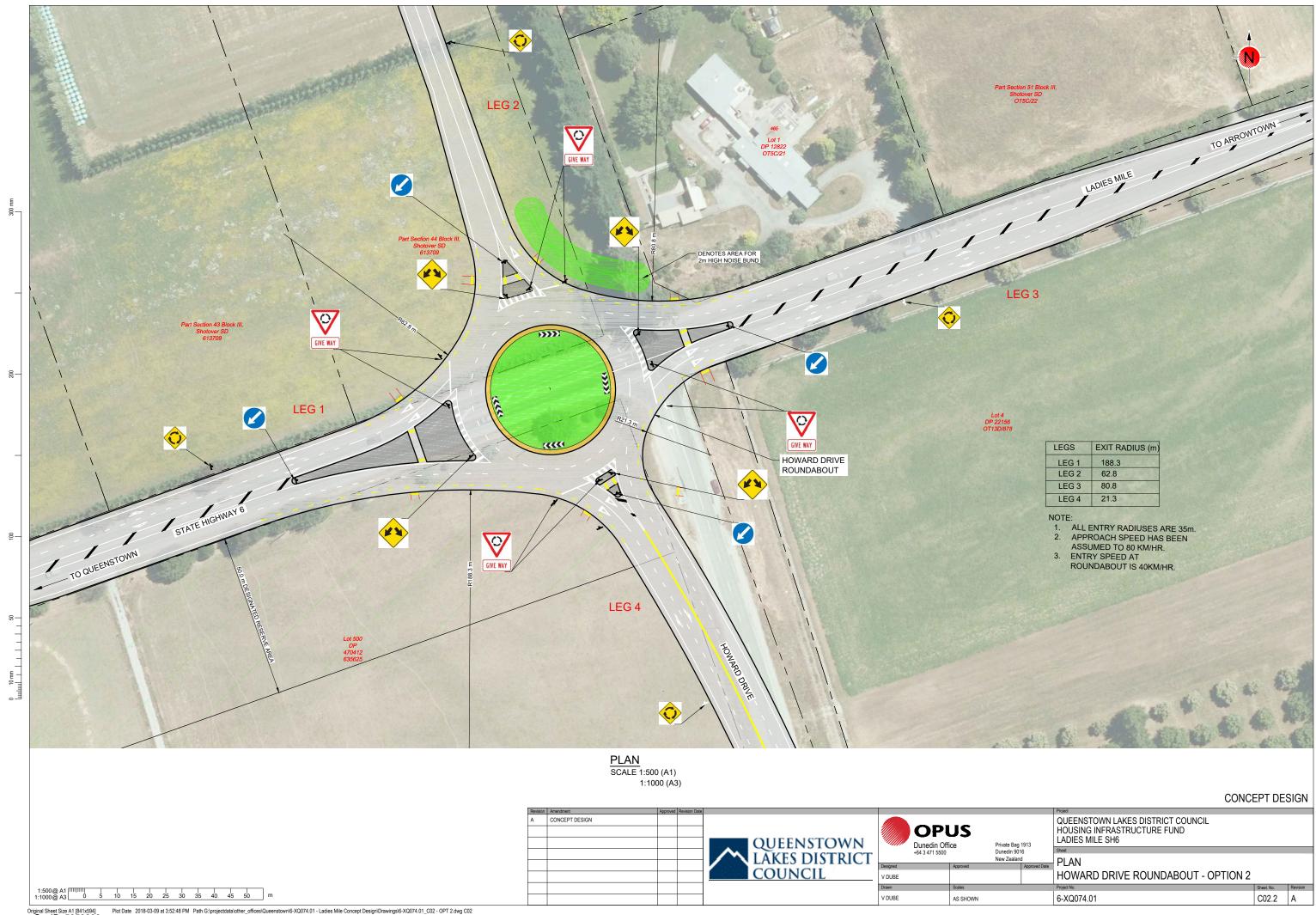
LADIES MILE SH6





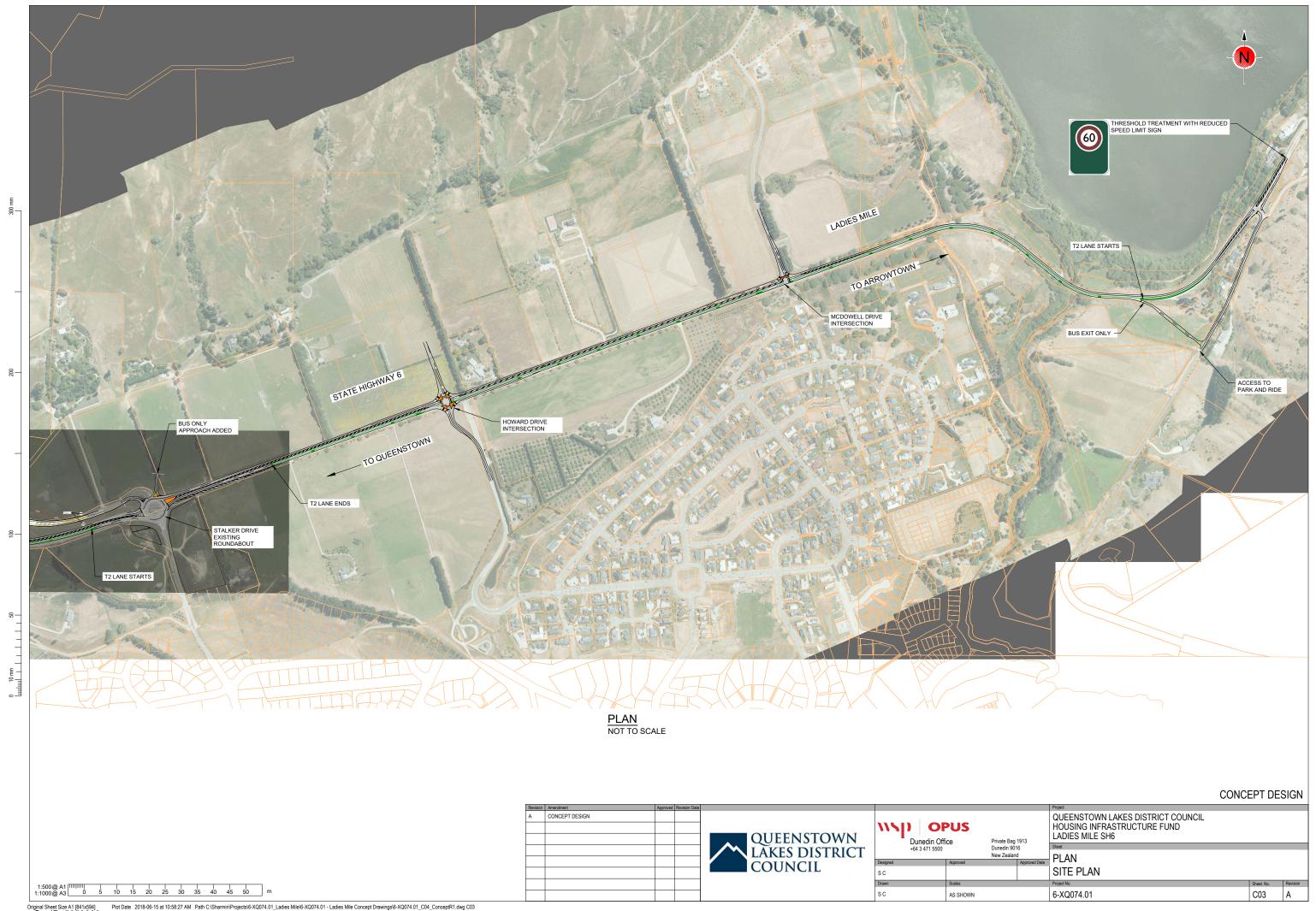
Original Sheet Size A1 [841x594]

Document Set ID: 5953266

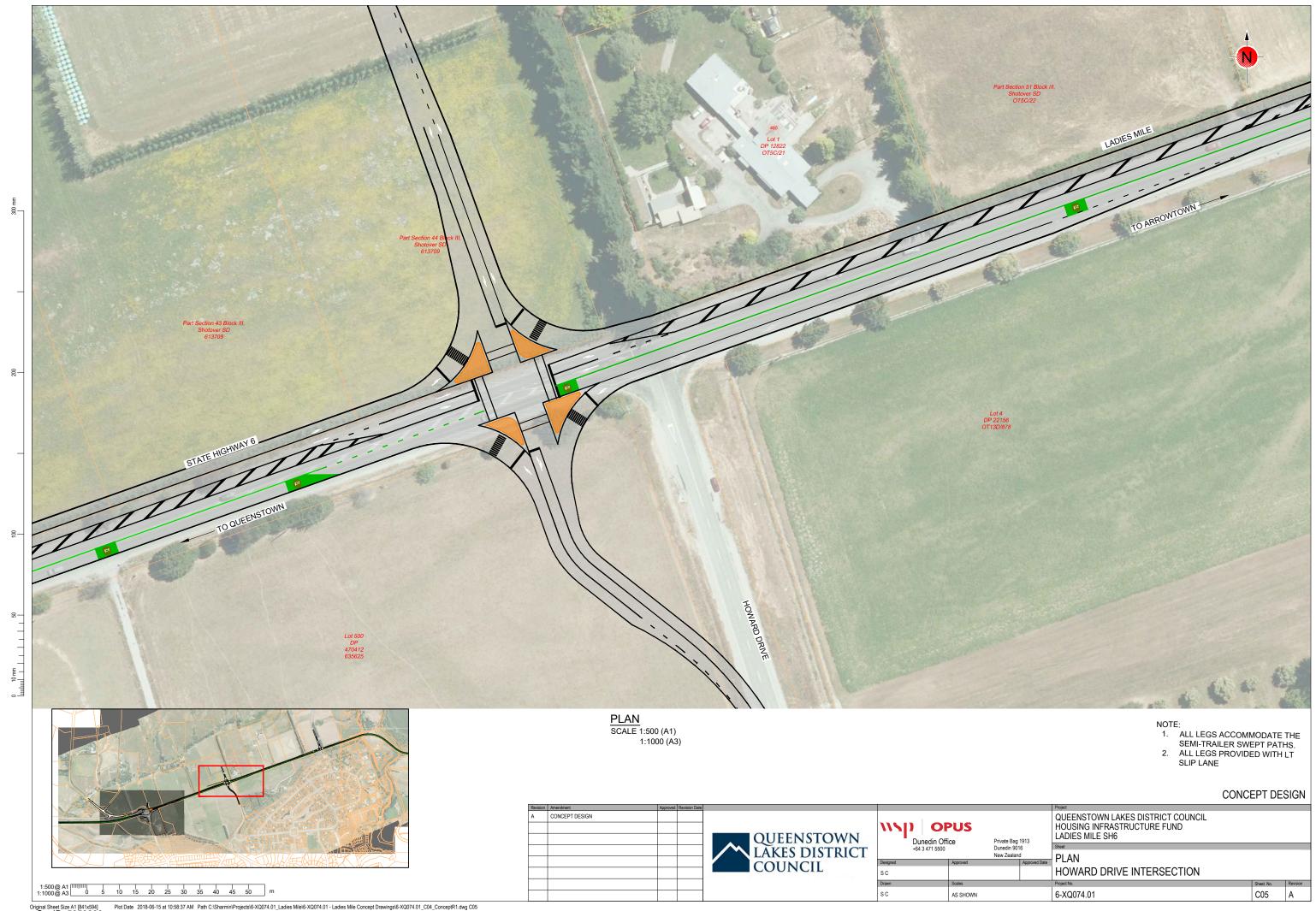


Original Sheet Size A1 [841x594]
Document Set ID: 5953266

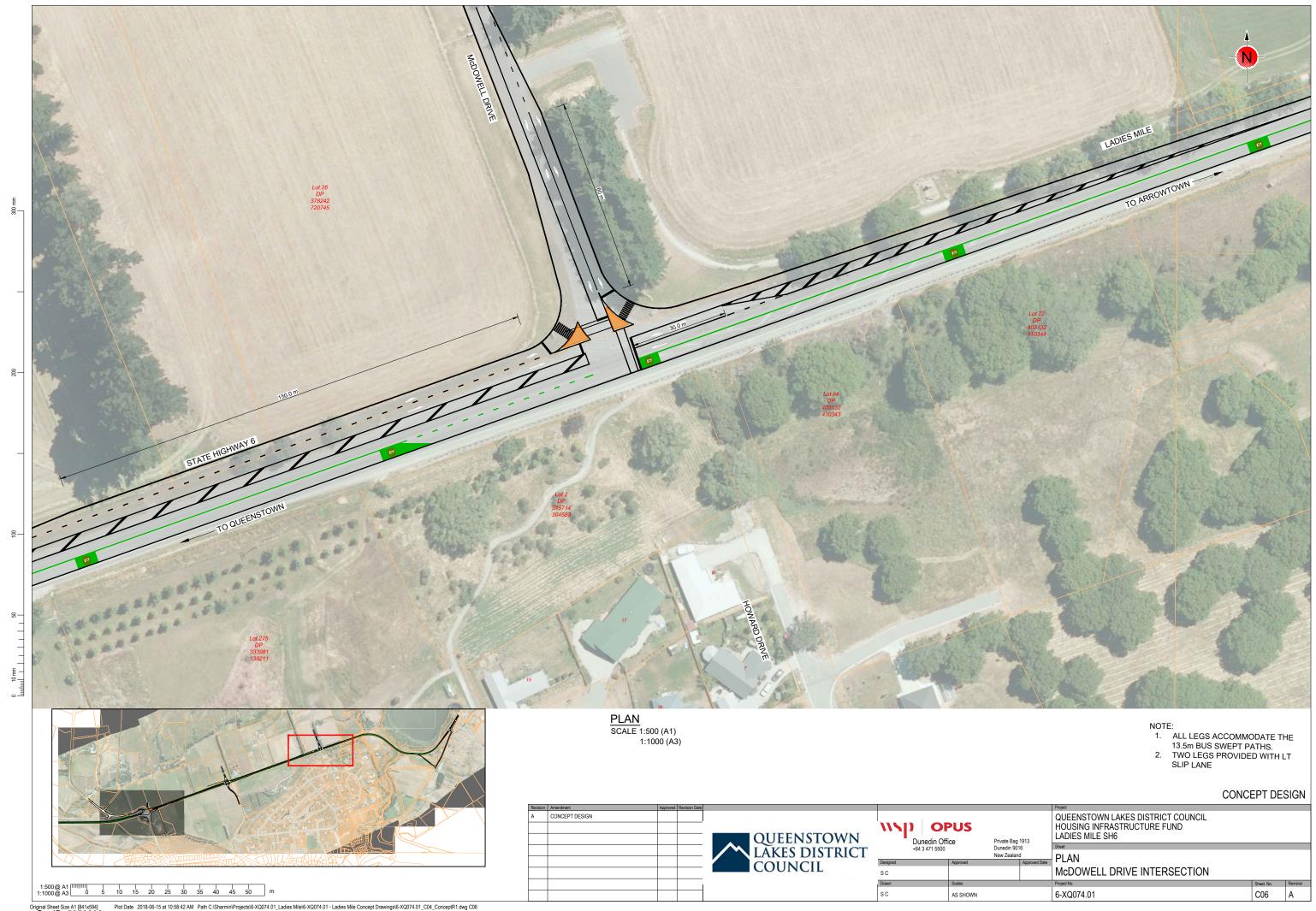
Original Sheet Size A1 [841x594]
Document Set ID: 5953266

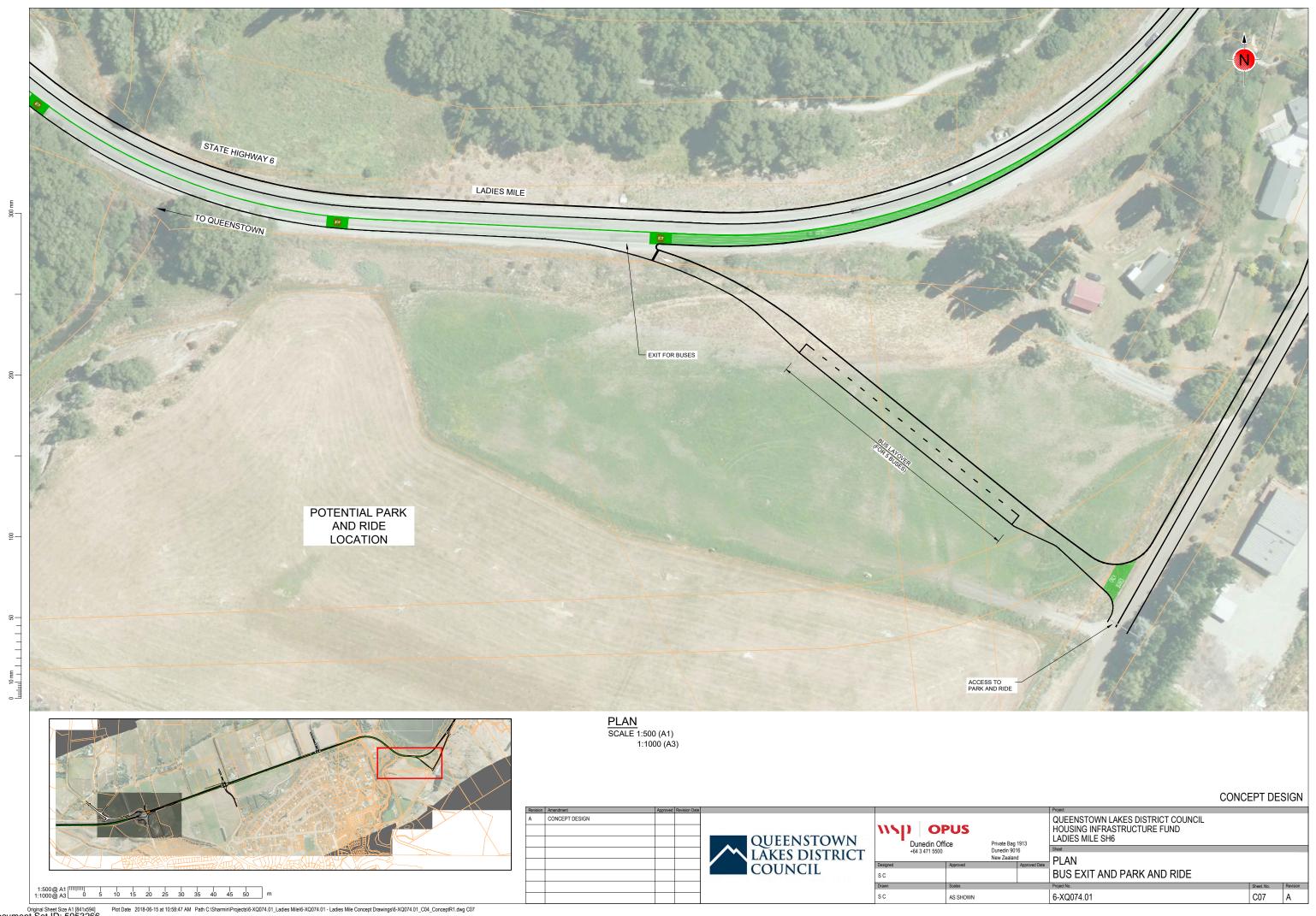

Plot Date 2018-06-27 at 1:22:07 PM Path G:NZTAIReg 13/Ladies Mile HIF16-XQ074.01 - Ladies Mile Concept Drawings/6-XQ074.01_C02.dwg

Original Sheet Size A1 [841x594]
Document Set ID: 5953266

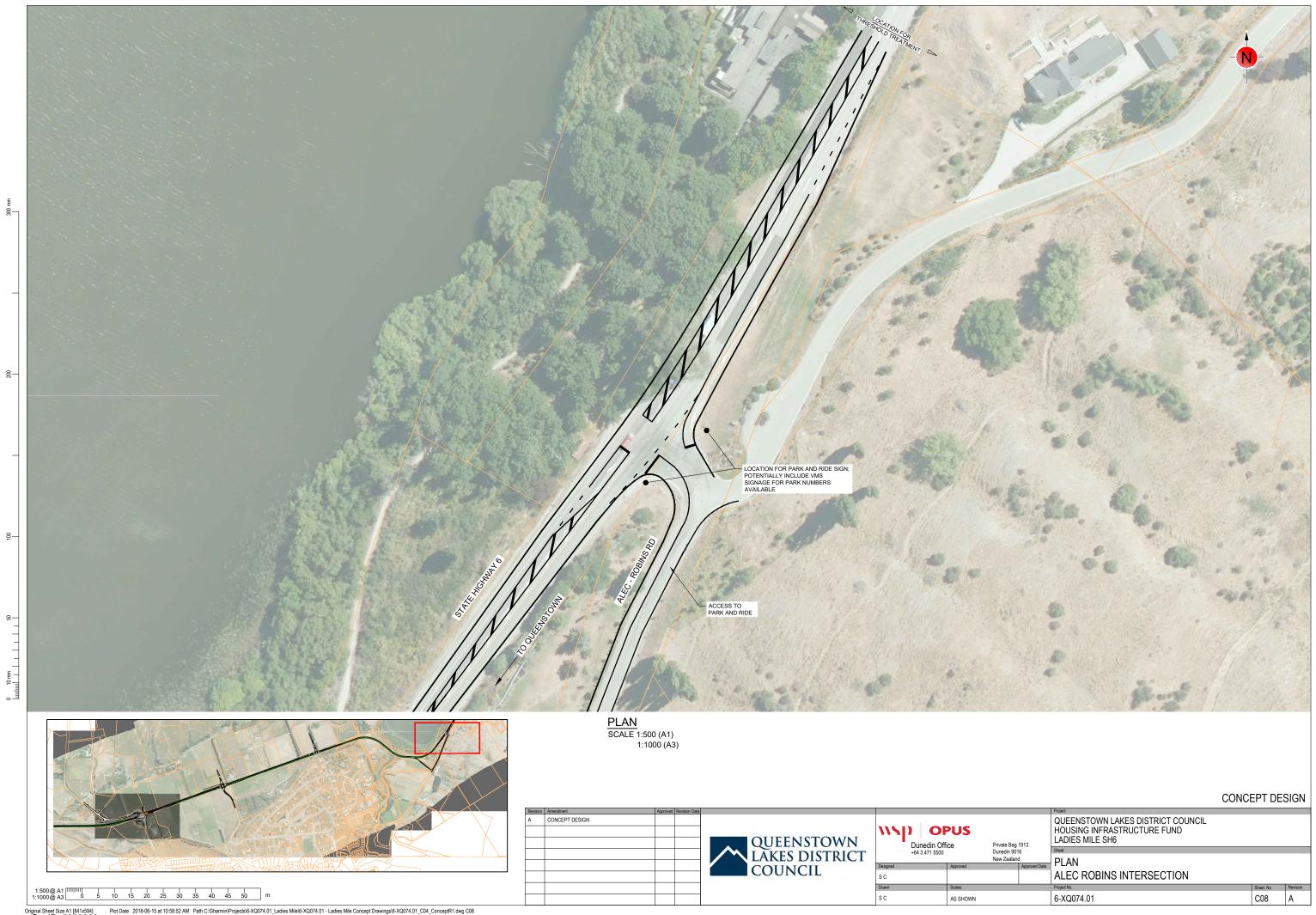


13 Appendix D - DesignsSignals Concept


Original Sheet Size A1 [841x594]
Document Set ID: 5953266
Version: 1, Version Date: 10/12/2018


Original Sheet Size A1 [841x594]
Document Set ID: 5953266

Plot Date 2018-06-15 at 10:58:37 AM Path C:Sharmin|Projects|6-XQ074.01_Ladies Mile|6-XQ074.01 - Ladies Mile Concept Drawings|6-XQ074.01_C04_ConceptR1.dwg


Original Sheet Size A1 [841x594]
Document Set ID: 5953266

Version: 1, Version Date: 10/12/2018

Original Sheet Size A1 [841x594]
Document Set ID: 5953266

Version: 1, Version Date: 10/12/2018

Original Sheet Size A1 [841x594]
Document Set ID: 5953266
Version: 1, Version Date: 10/12/2018

14 Appendix E - Intersection Estimates ROC

SUMMARY ESTIMATE SHEET

Project: QLDC LADIES MILE - HOWARD DRIVE File No: XQ074.01

Office: Queenstown Status: Preliminary Assessment

SUMMARY ESTIMATE FOR: Proposed Roading Connection Purpose: ROC

Option 1 Cost Index: 1116 (Sept 2017)

Approved: Giulio Chapman-Olla Date: 26-Jun-18 Page: 1 of 1

, ippiore	эрголец		Date. 20-Juli-10		raye. For F	
Item	Description	Unit	Quantity	Rate	\$	\$
1	CONTRACTORS QUALITY PLAN (incorporating Site Safety Plan, Environmental Management Plan and Sediment Control & Site Management Plan)					
1.1	Preparation of CQP incl SSP, EMP & SCP	LS	1	10000	\$10,000.00	
1.2	Management of CQP incl SSP, EMP & SCP	LS	1	30000	\$30,000.00	\$40,000.00
2	TRAFFIC MANAGEMENT PLAN					
2.1	Preparation of Temporary Traffic Management Plan	LS	1	3000	\$3,000.00	
2.2	Management of TTMP/Traffic Control	LS	1	45000	\$45,000.00	\$48,000.00
3	ESTABLISHMENT	LS	1	20000	\$20,000.00	\$20,000.00
4	DAYWORKS					
4.1	Labour	hr	80	50	\$4,000.00	
4.2	Plant	%	1.1	10000	\$11,000.00	
4.3	Materials	%	1.1	8000	\$8,800.00	\$23,800.00
5	LOCATION & PROTECTION OF SERVICES					
5.1	Location of Services & Liaison with Utility Authorities	LS	1	10000	\$10,000.00	
5.2	Relocation & Protection of Services	PS	1	30000	\$30,000.00	\$40,000.00
6	EARTHWORKS					
6.1	Clearing of Site	LS	1	20000	\$20,000.00	
6.2	Topsoil Stripping - 200mm deep (to waste)	m^3	2350	50	\$117,500.00	
6.3	Cut & Undercut to Waste	m^3	5480	50	\$274,000.00	
6.4	Sawcut Existing Kerb & Seal	m	30	15	\$450.00	
6.5	Granular Bulk Fill	m ³	3530	50	\$176,500.00	\$588,450.00
7	DRAINAGE					
7.1	Supply and Install 750mm Dia. PVC-U SN8 Pipe (Incl. bedding & pipe connection) (Pipe size to be confirmed by Design)	m	160	800	\$128,000.00	
7.2	Supply and Install 600mm Dia. PVC-U SN8 Pipe (Incl. bedding & pipe connection) (Pipe size to be confirmed by Design)	m	50	650	\$32,500.00	
7.3	Supply and Install 225mm Dia. PVC-U SN8 Pipe (Incl. bedding & pipe connection)	m	0	300	\$0.00	
7.4	Supply and Install 1.05m Dia.SWMH Chamber 1.5m deep with HD Lid (Incl. bedding & pipe connection)	ea	0	10000	\$0.00	
7.5	Supply and Install 1.5m Dia.SWMH Chamber 2.0m deep with HD Lid (Incl. bedding & pipe connection)	ea	4	13000	\$52,000.00	

⁹F-T-402 : 12/09

Item	Description	Unit	Quantity	Rate	\$	\$
7.6	Supply and Install Double Back Entry Sump (Incl. bedding & pipe connection)	ea	4	7000	\$28,000.00	
7.0	Supply and Install Single Back Entry Sump (Incl. bedding & pipe	Ga	4	7000	\$20,000.00	
7.7	connection) Supply and Install NZTA F2 110mm dia Subsoil drainage pipe	ea	8	3500	\$28,000.00	
	(Incl. bedding, Filter material, pipe connection, Geotextile filter wrap &					
7.8	cleaning eye)	m	600	60	\$36,000.00	
7.9	Arrow Irrgation Pipe Bypass Works	LS	0	40000	\$0.00	
7.10	Remove Existing SW Sump and Manhole ConnectionPipe	ea	0	1000	\$0.00	
7.11	Site Stormwater Diversion Works	PS	1	100000	\$100,000.00	
7.12	Remove Existing Concrete Kerb & Channel	m	100	50	\$5,000.00	\$409,500.00
8	CONCRETE WORKS					
8.1	500mm Wide Kerb & Channel	m	1350	120	\$162,000.00	
8.2	Construct 300mm Wide Semi-Mountable kerb	m	426	100	\$42,600.00	
8.3	Form Pedestrian Kerb	m	20	100	\$2,000.00	
8.4	100mm Concrete Island Infill with embedded stones	m^2	580	150	\$87,000.00	\$293,600.00
			475			
9	PAVEMENT CONSTRUCTION (CBR4)					
9.1	300mm Sub-base AP65 (solid measure)	m ³	4965	160	\$794,400.00	
9.2	180mm Basecourse AP40 (solid measure)	m ³	2980	190	\$566,200.00	
9.3	Running Course (looase measure)	m ³	70	350	\$24,500.00	\$1,385,100.00
10	SURFACING					
10.1	Nominal 50mm AC14 Asphaltic Concrete	m ²	4200	50	\$210,000.00	
10.2	Nominal 100mm AC20 Asphaltic Concrete	m ²	4200	120	\$504,000.00	
10.3	Membrane Seal	m ²	4200	8	\$33,600.00	
10.4	Chipseal surfacing (2 Coat 3/5)	m ²	10700	10	\$107,000.00	\$854,600.00
11	FOOTPATH CONSTRUCTION - (NOT SHOWN ON CONCEPT PLAN)					
11.1	Timber Batten Edging incl Pegs	m	720	20	\$14,400.00	
11.2	100mm AP40 Basecourse (solid measure)	m ³	145	170	\$24,650.00	
11.3	Nominal 25mm Mix 10 Asphaltic Concrete	m ²	1080	35	\$37,800.00	
11.4	Cycle Coloured Surface (AS2700 G13 Emerald Green or Similar)	m ²	0	120	\$0.00	
11.5	Fun Yellow Tactile Audio Pavers	m ²	24	500	\$12,000.00	
11.6	Resting Rails	ea	16	1200	\$12,000.00	
11.7	Provisional Sum for Pedestrian Solution and bus stops	lot	1	955000	\$955,000.00	\$1,063,050.00
10	DOAD LICHTING					
12	ROAD LIGHTING Relocate Existing Lighting Column (Incl. Fitting luminares and power					
12.1	disconnection)	ea	2	2000	\$4,000.00	
12.2	Supply & Install New 12m High Lighting Column with 3m Outreach Arm (Incl. 152W LED luminaires)	ea	3	4500	\$13,500.00	
12.3	Supply & Install New 8m High Lighting Column with Post Top Luminaire Mounting Spigot (Incl. 102W LED luminaires) (Based on 45m spacing)	ea	15	3500	\$52,500.00	
12.4	Power Cable Installation (Incl. Trenching and ducting if required)	LS	1	10000	\$10,000.00	
12.5	Commisioning of Lighting Columns	LS	1	3000	\$3,000.00	\$83,000.00
13	PAVEMENT MARKINGS					

⁹F-T-402 : 12/09

Item	Description	Unit	Quantity	Rate	\$	\$
13.1	Reflectorised Pavement marking	LS	1	7000	\$7,000.00	
13.20	Redundant Pavement Marking Removal (Sand Blasting)	LS	1	2000	\$2,000.00	\$9,000.00
14	TRAFFIC SERVICES					
14.1	Install PW-8 Rotary Junction Sign	ea	4	750	\$3,000.00	
14.2	Install RG-6R Rotary Give Way Sign	ea	8	750	\$6,000.00	
14.3	Install RG-17 Keep Left (inc. Duroflex PS 03 mounting)	ea	4	350	\$1,400.00	
14.4	Install PW-5 Diverge Sign	ea	4	1200	\$4,800.00	
14.5	Install PW-69 Chevron Board	ea	4	1200	\$4,800.00	
14.6	Install RG-1 50 km/hr speed limit sign	ea	4	750	\$3,000.00	
14.7	Install RG-1 80 km/hr speed limit sign	ea	4	750	\$3,000.00	
14.8	SN-1 Street Sign	ea	4	250	\$1,000.00	\$27,000.00
15	LANDSCAPING					
15.1	Existing Tree Removal	LS	1	20000	\$20,000.00	
15.2	Imported Topsoil 100mm Min. depth (solid measure)	m^3	350	100	\$35,000.00	
15.3	Grassing and Hydroseeding (Grass for road berm areas only)	m ²	3500	2.8	\$9,800.00	
15.4	Realignment of existing Timber Post and 7 Wire fence	m	475	100	\$47,500.00	\$112,300.00
16	RETAINING WALLS					
16.1	Slope Stabilisation Works (Allowance for Soil Nailing based on square metre rate for Andrews Rd Soil Nailing 2017) (4000m2 x \$150)	PS	0	600000	\$0.00	
16.1	Post & Rail H5 Timber Retaining Wall (under 1.5m High)	PS	0	100000	\$0.00	\$0.00
17	AS-BUILT DATA & RAMM					
17.1	Road construction RAMM information	LS	1	4000	\$4,000.00	
17.2	As Built drawings	LS	1	6000	\$6,000.00	\$10,000.00
	TOTAL					\$5,007,400.00
	Main Uncertainies					
Α	Pavement Design (To be confirmed after testing)					
В	Lighting Design					
С	Services (To be confirmed after pot-holing)					

⁹F-T-402 : 12/09

SUMMARY ESTIMATE SHEET

Project: QLDC LADIES MILE - LOWER SHOTOVER ROAD File No: XQ074.01

Office: Queenstown Status: Preliminary Assessment

SUMMARY ESTIMATE FOR: Proposed Roading Connection Purpose: ROC

T Junction Cost Index: 1116 (Sept 2017)

Approved: Giulio Chapman-Olla Date: 15-May-18 Page: 1 of 1

TRAFFIC MANAGEMENT PLAN	дрргоч			Date. 13-May-10		rage. For r	
Environmental Management Plan and Sediment Control & Site Management Plan	Item	Description	Unit	Quantity	Rate	\$	\$
12 Management of CQP ind SSP, EMP & SCP	1	Environmental Management Plan and Sediment Control & Site					
2 TRAFFIC MANAGEMENT PLAN 2.1 Preparation of Temporary Traffic Management Plan 2.2 Management of TTMP/Traffic Control 3 ESTABLISHMENT 4 LS 1 2000 \$2,000.00 \$37,000.00 \$37,000.00 3 ESTABLISHMENT 5 LS 1 20000 \$20,000.00 \$20,000.00 4 DAYWORKS 4.1 Labour 6 hr 80 50 \$4,000.00 4.2 Plant 7 9% 10000 1.1.1 \$11,000.00 4.3 Materials 7 8000 1.1.1 \$8,800.00 8 8000 1.1.1 \$8,800.00 8 8000 1.1.1 \$8,800.00 8 8000 1.1.1 \$8,800.00 8 8000 1.1.1 \$8,000.00 8 10,000.00 5 LOCATION & PROTECTION OF SERVICES 5.1 Location of Services & Liaison with Utility Authorities 8 LS 1 10000 \$10,000.00 6 EARTHWORKS 6 1.1 Clearing of Site 6 2.1 Topsoil Stripping - 200mm deep (to waste) 6 3.2 Cut & Undercut to Waste 6 4.4 Sawcut Existing Kerb & Seal 6 5.5 Granular Bulk Fill 7 DRAINAGE 8 Supply and Install 750mm Dia, PVC-U SN8 Pipe (Incl. bedding & pipe connection) (Pipe size to be confirmed by Design) 7 DRAINAGE 8 Supply and Install 105m Dia PVC-U SN8 Pipe (Incl. bedding & pipe connection) (Pipe size to be confirmed by Design) 7 Supply and Install 225mm Dia PVC-U SN8 Pipe (Incl. bedding & pipe connection) (Pipe size to be confirmed by Design) 7 Supply and Install 1.5 m Dia SWMH Chamber 1.5 m deep with HD Lid 8 Supply and Install 1.5 m Dia SWMH Chamber 1.5 m deep with HD Lid 8 Supply and Install 1.5 m Dia SWMH Chamber 2.0 m deep with HD Lid 8 Supply and Install 1.5 m Dia SWMH Chamber 2.0 m deep with HD Lid 8 Supply and Install 1.5 m Dia SWMH Chamber 2.0 m deep with HD Lid	1.1	Preparation of CQP incl SSP, EMP & SCP	LS	1	10000	\$10,000.00	
Preparation of Temporary Traffic Management Plan	1.2	Management of CQP incl SSP, EMP & SCP	LS	1	30000	\$30,000.00	\$40,000.00
2.2 Management of TTMP/Traffic Control 3. ESTABLISHMENT LS 1. 20000 \$20,000.00 \$20,00	2	TRAFFIC MANAGEMENT PLAN					
BESTABLISHMENT	2.1	Preparation of Temporary Traffic Management Plan	LS	1	2000	\$2,000.00	
4. DAYWORKS 4.1 Labour hr 80 50 \$4,000.00 4.2 Plant % 10000 1.1 \$11,000.00 4.3 Materials % 8000 1.1 \$8,800.00 \$23,800.00 5. LOCATION & PROTECTION OF SERVICES 5.1 Location of Services & Liaison with Utility Authorities LS 1 10000 \$10,000.00 5.2 Relocation & Protection of Services PS 1 30000 \$30,000.00 \$40,000.00 6. EARTHWORKS 6.1 Clearing of Site LS 1 20000 \$20,000.00 6.2 Topsoil Stripping - 200mm deep (to waste) m² 1850 50 \$92,500.00 6.3 Cut & Undercut to Waste m³ 2300 50 \$115,000.00 6.4 Sawcut Existing Kerb & Seal m 45 15 \$675.00 6.5 Granular Bulk Fill m³ 2300 50 \$115,000.00 \$343,175.00 7. DRAINAGE 7.1 DRAINAGE 7.2 Connection) (Pipe size to be confirmed by Design) m 50 800 \$40,000.00 Supply and Install 750mm Dia. PVC-U SN8 Pipe (Inct. bedding & pipe connection) (Pipe size to be confirmed by Design) m 540 650 \$351,000.00 Supply and Install 25mm Dia. PVC-U SN8 Pipe (Inct. bedding & pipe connection) (Pipe size to be confirmed by Design) m 540 650 \$351,000.00 Supply and Install 1.5m Dia. SWMH Chamber 1.5m deep with HD Lid (Incl. bedding & pipe connection) Supply and Install 1.5m Dia. SWMH Chamber 1.5m deep with HD Lid (Incl. bedding & pipe connection) Supply and Install 1.5m Dia. SWMH Chamber 1.5m deep with HD Lid (Incl. bedding & pipe connection) Supply and Install 1.5m Dia. SWMH Chamber 2.0m deep with HD Lid	2.2	Management of TTMP/Traffic Control	LS	1	35000	\$35,000.00	\$37,000.00
Labour	3	ESTABLISHMENT	LS	1	20000	\$20,000.00	\$20,000.00
Plant	4	DAYWORKS					
4.3 Materials	4.1	Labour	hr	80	50	\$4,000.00	
Section Services Location of Services Location of Services Location of Services Laison with Utility Authorities LS	4.2	Plant	%	10000	1.1	\$11,000.00	
Location of Services & Liaison with Utility Authorities	4.3	Materials	%	8000	1.1	\$8,800.00	\$23,800.00
Relocation & Protection of Services	5	LOCATION & PROTECTION OF SERVICES					
6.1 Clearing of Site 6.2 Topsoil Stripping - 200mm deep (to waste) 6.3 Cut & Undercut to Waste 6.4 Sawcut Existing Kerb & Seal 6.5 Granular Bulk Fill 7.1 DRAINAGE 8 Supply and Install 750mm Dia. PVC-U SN8 Pipe (Incl. bedding & pipe connection) (Pipe size to be confirmed by Design) 8 Supply and Install 225mm Dia. PVC-U SN8 Pipe (Incl. bedding & pipe connection) (Pipe size to be confirmed by Design) 8 Supply and Install 225mm Dia. PVC-U SN8 Pipe (Incl. bedding & pipe connection) (Pipe size to be confirmed by Design) 8 Supply and Install 225mm Dia. PVC-U SN8 Pipe (Incl. bedding & pipe connection) 8 Supply and Install 225mm Dia. PVC-U SN8 Pipe (Incl. bedding & pipe connection) 8 Supply and Install 225mm Dia. PVC-U SN8 Pipe (Incl. bedding & pipe connection) 8 Supply and Install 1.05m Dia. SWMH Chamber 1.5m deep with HD Lid (Incl. bedding & pipe connection) 8 Supply and Install 1.5m Dia. SWMH Chamber 2.0m deep with HD Lid (Incl. bedding & pipe connection) 8 Supply and Install 1.5m Dia. SWMH Chamber 2.0m deep with HD Lid	5.1	Location of Services & Liaison with Utility Authorities	LS	1	10000	\$10,000.00	
6.1 Clearing of Site 6.2 Topsoil Stripping - 200mm deep (to waste) 6.3 Cut & Undercut to Waste 6.4 Sawcut Existing Kerb & Seal 6.5 Granular Bulk Fill 7.0 DRAINAGE Supply and Install 750mm Dia. PVC-U SN8 Pipe (Incl. bedding & pipe connection) (Pipe size to be confirmed by Design) Supply and Install 225mm Dia. PVC-U SN8 Pipe (Incl. bedding & pipe connection) Supply and Install 225mm Dia. PVC-U SN8 Pipe (Incl. bedding & pipe connection) Supply and Install 225mm Dia. PVC-U SN8 Pipe (Incl. bedding & pipe connection) Supply and Install 225mm Dia. PVC-U SN8 Pipe (Incl. bedding & pipe connection) Supply and Install 225mm Dia. PVC-U SN8 Pipe (Incl. bedding & pipe connection) Supply and Install 1.05m Dia.SWMH Chamber 1.5m deep with HD Lid (Incl. bedding & pipe connection) Supply and Install 1.5m Dia.SWMH Chamber 2.0m deep with HD Lid Supply and Install 1.5m Dia.SWMH Chamber 2.0m deep with HD Lid Supply and Install 1.5m Dia.SWMH Chamber 2.0m deep with HD Lid	5.2	Relocation & Protection of Services	PS	1	30000	\$30,000.00	\$40,000.00
6.2 Topsoil Stripping - 200mm deep (to waste) 6.3 Cut & Undercut to Waste 6.4 Sawcut Existing Kerb & Seal 6.5 Granular Bulk Fill 6.6 Granular Bulk Fill 6.7 DRAINAGE 7.1 Connection) (Pipe size to be confirmed by Design) 8.2 Supply and Install 600mm Dia. PVC-U SN8 Pipe (Incl. bedding & pipe connection) (Pipe size to be confirmed by Design) 8.2 Supply and Install 225mm Dia. PVC-U SN8 Pipe (Incl. bedding & pipe connection) (Pipe size to be confirmed by Design) 8.2 Supply and Install 225mm Dia. PVC-U SN8 Pipe (Incl. bedding & pipe connection) (Pipe size to be confirmed by Design) 8.3 Supply and Install 225mm Dia. PVC-U SN8 Pipe (Incl. bedding & pipe connection) 8.3 Supply and Install 1.05m Dia.SWMH Chamber 1.5m deep with HD Lid (Incl. bedding & pipe connection) 8.3 Supply and Install 1.05m Dia.SWMH Chamber 2.0m deep with HD Lid (Incl. bedding & pipe connection) 8.3 Supply and Install 1.5m Dia.SWMH Chamber 2.0m deep with HD Lid (Incl. bedding & pipe connection) 8.4 Sawcut Existing Name A	6	EARTHWORKS					
6.3 Cut & Undercut to Waste m³ 2300 50 \$115,000.00 6.4 Sawcut Existing Kerb & Seal m 45 15 \$675.00 6.5 Granular Bulk Fill m³ 2300 50 \$115,000.00 \$343,175.00 6.5 Granular Bulk Fill m³ 2300 50 \$115,000.00 \$343,175.00 6.5 Granular Bulk Fill m³ 2300 50 \$115,000.00 \$343,175.00 6.5 Granular Bulk Fill m³ 2300 50 \$115,000.00 \$343,175.00 6.5 Supply and Install 750mm Dia. PVC-U SN8 Pipe (Incl. bedding & pipe connection) (Pipe size to be confirmed by Design) m 50 800 \$40,000.00 Supply and Install 600mm Dia. PVC-U SN8 Pipe (Incl. bedding & pipe connection) (Pipe size to be confirmed by Design) m 540 650 \$351,000.00 Supply and Install 225mm Dia. PVC-U SN8 Pipe (Incl. bedding & pipe connection) m 30 300 \$9,000.00 Supply and Install 1.05m Dia.SWMH Chamber 1.5m deep with HD Lid (Incl. bedding & pipe connection) ea 6 10000 \$60,000.00	6.1	Clearing of Site	LS	1	20000	\$20,000.00	
6.4 Sawcut Existing Kerb & Seal m 45 15 \$675.00 6.5 Granular Bulk Fill m³ 2300 50 \$115,000.00 \$343,175.00 7 DRAINAGE Supply and Install 750mm Dia. PVC-U SN8 Pipe (Incl. bedding & pipe connection) (Pipe size to be confirmed by Design) m 50 800 \$40,000.00 Supply and Install 600mm Dia. PVC-U SN8 Pipe (Incl. bedding & pipe connection) (Pipe size to be confirmed by Design) m 540 650 \$351,000.00 Supply and Install 225mm Dia. PVC-U SN8 Pipe (Incl. bedding & pipe connection) m 30 300 \$9,000.00 Supply and Install 1.05m Dia.SWMH Chamber 1.5m deep with HD Lid (Incl. bedding & pipe connection) ea 6 10000 \$60,000.00	6.2	Topsoil Stripping - 200mm deep (to waste)	m^3	1850	50	\$92,500.00	
Granular Bulk Fill m³ 2300 50 \$115,000.00 \$343,175.00 7 DRAINAGE Supply and Install 750mm Dia. PVC-U SN8 Pipe (Incl. bedding & pipe connection) (Pipe size to be confirmed by Design) m 50 800 \$40,000.00 Supply and Install 600mm Dia. PVC-U SN8 Pipe (Incl. bedding & pipe connection) (Pipe size to be confirmed by Design) m 540 650 \$351,000.00 Supply and Install 225mm Dia. PVC-U SN8 Pipe (Incl. bedding & pipe connection) m 30 300 \$9,000.00 Supply and Install 1.05m Dia.SWMH Chamber 1.5m deep with HD Lid (Incl. bedding & pipe connection) ea 6 10000 \$60,000.00 Supply and Install 1.5m Dia.SWMH Chamber 2.0m deep with HD Lid	6.3	Cut & Undercut to Waste	m^3	2300	50	\$115,000.00	
7 DRAINAGE Supply and Install 750mm Dia. PVC-U SN8 Pipe (Incl. bedding & pipe connection) (Pipe size to be confirmed by Design) Supply and Install 600mm Dia. PVC-U SN8 Pipe (Incl. bedding & pipe connection) (Pipe size to be confirmed by Design) M 50 800 \$40,000.00 Supply and Install 600mm Dia. PVC-U SN8 Pipe (Incl. bedding & pipe connection) (Pipe size to be confirmed by Design) Supply and Install 225mm Dia. PVC-U SN8 Pipe (Incl. bedding & pipe connection) Supply and Install 1.05m Dia.SWMH Chamber 1.5m deep with HD Lid (Incl. bedding & pipe connection) Supply and Install 1.5m Dia.SWMH Chamber 2.0m deep with HD Lid	6.4	Sawcut Existing Kerb & Seal	m	45	15	\$675.00	
Supply and Install 750mm Dia. PVC-U SN8 Pipe (Incl. bedding & pipe connection) (Pipe size to be confirmed by Design) m 50 800 \$40,000.00 Supply and Install 600mm Dia. PVC-U SN8 Pipe (Incl. bedding & pipe connection) (Pipe size to be confirmed by Design) m 540 650 \$351,000.00 Supply and Install 225mm Dia. PVC-U SN8 Pipe (Incl. bedding & pipe connection) m 30 300 \$9,000.00 Supply and Install 1.05m Dia.SWMH Chamber 1.5m deep with HD Lid (Incl. bedding & pipe connection) ea 6 10000 \$60,000.00 Supply and Install 1.5m Dia.SWMH Chamber 2.0m deep with HD Lid	6.5	Granular Bulk Fill	m ³	2300	50	\$115,000.00	\$343,175.00
7.1 connection) (Pipe size to be confirmed by Design) m 50 800 \$40,000.00 Supply and Install 600mm Dia. PVC-U SN8 Pipe (Incl. bedding & pipe connection) (Pipe size to be confirmed by Design) m 540 650 \$351,000.00 Supply and Install 225mm Dia. PVC-U SN8 Pipe (Incl. bedding & pipe connection) m 30 300 \$9,000.00 Supply and Install 1.05m Dia.SWMH Chamber 1.5m deep with HD Lid (Incl. bedding & pipe connection) ea 6 10000 \$60,000.00 Supply and Install 1.5m Dia.SWMH Chamber 2.0m deep with HD Lid	7	DRAINAGE					
7.2 connection) (Pipe size to be confirmed by Design) m 540 650 \$351,000.00 Supply and Install 225mm Dia. PVC-U SN8 Pipe (Incl. bedding & pipe connection) m 30 300 \$9,000.00 Supply and Install 1.05m Dia.SWMH Chamber 1.5m deep with HD Lid (Incl. bedding & pipe connection) ea 6 10000 \$60,000.00 Supply and Install 1.5m Dia.SWMH Chamber 2.0m deep with HD Lid 50,000.00 10000 \$60,000.00	7.1		m	50	800	\$40,000.00	
7.3 connection) m 30 300 \$9,000.00 Supply and Install 1.05m Dia.SWMH Chamber 1.5m deep with HD Lid 7.4 (Incl. bedding & pipe connection) ea 6 10000 \$60,000.00 Supply and Install 1.5m Dia.SWMH Chamber 2.0m deep with HD Lid	7.2	connection) (Pipe size to be confirmed by Design)	m	540	650	\$351,000.00	
7.4 (Incl. bedding & pipe connection) ea 6 10000 \$60,000.00 Supply and Install 1.5m Dia.SWMH Chamber 2.0m deep with HD Lid	7.3	connection)	m	30	300	\$9,000.00	
	7.4	(Incl. bedding & pipe connection)	ea	6	10000	\$60,000.00	
	7.5	1 11 2	ea	2	13000	\$26,000.00	

PF-T-402 : 12/09

Item	Description	Unit	Quantity	Rate	\$	\$
7.6	Supply and Install Double Back Entry Sump (Incl. bedding & pipe connection)	02	2	7000	¢14,000,00	
7.6	Supply and Install Single Back Entry Sump (Incl. bedding & pipe	ea	2	7000	\$14,000.00	
7.7	connection)	ea	6	3500	\$21,000.00	
	Supply and Install NZTA F2 110mm dia Subsoil drainage pipe (Incl.bedding, Filter material, pipe connection, Geotextile filter wrap &					
7.8	cleaning eye)	m	1080	60	\$64,800.00	
7.9	Arrow Irrgation Pipe Bypass Works	LS	1	40000	\$40,000.00	
7.10	Remove Existing SW Sump and Manhole ConnectionPipe	ea	0	1000	\$0.00	
7.11	Site Stormwater Diversion Works	PS	1	100000	\$100,000.00	
7.12	Remove Existing Concrete Kerb & Channel	m	0	50	\$0.00	
7.13	Reuse and install existing 300mm Dia. Culvert	m	10	300	\$3,000.00	
7.14	Culvert Headwalls	ea	4	300	\$1,200.00	\$730,000.00
8	CONCRETE WORKS					
8.1	500mm Wide Kerb & Channel	m	145	120	\$17,400.00	
8.2	Construct 300mm Wide Semi-Mountable kerb	m	0	100	\$0.00	
8.3	Form Pedestrian Kerb	m	0	100	\$0.00	
8.4	100mm Concrete Island Infill with embedded stones	m ²	0	150	\$0.00	\$17,400.00
9	PAVEMENT CONSTRUCTION (CBR4)					
9.1	375mm Sub-base AP65 (solid measure)	m^3	2570	160	\$411,200.00	
9.2	160mm Basecourse AP40 (solid measure)	${ m m}^3$	1020	190	\$193,800.00	
9.3	Running Course (looase measure)	m ³	8	350	\$2,800.00	\$607,800.00
10	SURFACING					
10.1	Nominal 50mm DG14 Asphaltic Concrete	m ²	2650	50	\$132,500.00	
10.2	Membrane Seal	m ²	2650	8	\$21,200.00	
10.3	Chipseal surfacing (2 Coat 3/5)	m ²	3685	10	\$36,850.00	\$190,550.00
10.0	onipsodi sundanig (2 oodi ara)		0000		400/000100	<i>4170700000</i>
11	FOOTPATH CONSTRUCTION - (NOT SHOWN ON CONCEPT PLAN)					
11.1	Timber Batten Edging incl Pegs	m	300	20	\$6,000.00	
11.2	100mm AP40 Basecourse (solid measure)	m^3	23	170	\$3,910.00	
11.3	Nominal 25mm Mix 10 Asphaltic Concrete	m^2	225	35	\$7,875.00	
11.4	Cycle Coloured Surface (AS2700 G13 Emerald Green or Similar)	m^2	0	120	\$0.00	
11.5	Fun Yellow Tactile Audio Pavers	m^2	2	500	\$1,000.00	
11.6	Resting Rails	ea	2	1200	\$2,400.00	\$21,185.00
12	DOAD LIGHTING					
12	ROAD LIGHTING Relocate Existing Lighting Column (Incl. Fitting luminares and power					
12.1	disconnection)	ea	0	2000	\$0.00	
12.2	Supply & Install New 12m High Lighting Column with 3m Outreach Arm (Incl. 152W LED luminaires)	ea	4	4500	\$18,000.00	
12.3	Supply & Install New 8m High Lighting Column with Post Top Luminaire Mounting Spigot (Incl. 102W LED luminaires) (Baed on 45m spacing)	ea	5	3500	\$17,500.00	
12.4	Power Cable Installation (Incl. Trenching and ducting if required)	LS	1	20000	\$20,000.00	
12.5	Commisioning of Lighting Columns	LS	1	3000	\$3,000.00	\$58,500.00
13	PAVEMENT MARKINGS					

Item	Description	Unit	Quantity	Rate	\$	\$
13.1	Reflectorised Pavement marking	LS	1	9000	\$9,000.00	
13.20	Redundant Pavement Marking Removal (Sand Blasting)	LS	1	2000	\$2,000.00	\$11,000.00
14	TRAFFIC SERVICES					
14.1	Install RG-6 Give Way Sign	ea	2	750	\$1,500.00	
14.2	Install PW-26 Curve Advisoy with minor road on left & right Sign	ea	2	750	\$1,500.00	
14.3	Reinstall PW-17 Curve Advisory Sign	ea	1	750	\$750.00	
14.4	Install RG-1 80km Speed Limit Sign	ea	4	1200	\$4,800.00	
14.5	Install RG-1 50km Speed Limit Sign	ea	1	1200	\$1,200.00	
14.6	Reinstall PW-34 School Bus & PW34.1 Bus Route Sign	ea	1	750	\$750.00	
14.7	Install SN-1 Street Sign	ea	2	250	\$500.00	\$11,000.00
15	LANDSCAPING					
15.1	Existing Tree/Hedge Removal	LS	1	10000	\$10,000.00	
15.2	Imported Topsoil 100mm Min. depth (solid measure)	m ³	22	100	\$2,200.00	
15.3	Grassing and Hydroseeding (Grass for road berm areas only)	m ²	215	2.8	\$602.00	
15.4	New & Realigned existing Timber Post and 7 Wire fence	m	200	100	\$20,000.00	\$32,802.00
17	AS-BUILT DATA & RAMM					
17.1	Road construction RAMM information	LS	1	4000	\$4,000.00	
17.2	As Built drawings	LS	1	6000	\$6,000.00	\$10,000.00
	TOTAL					\$2,194,212.00
	Main Uncertainies					
Α	Pavement Design (To be confirmed after testing)					
В	Lighting Design					
С	Services (To be confirmed after pot-holing)					

SUMMARY ESTIMATE SHEET

Project: QLDC LADIES MILE - McDOWEL DRIVE File No: XQ074.01

Office: Queenstown Status: Preliminary Assessment

SUMMARY ESTIMATE FOR: Proposed Roading Connection Purpose: ROC

Roundabout Cost Index: 1116 (Sept 2017)

Approved: Giulio Chapman-Olla Date: 15-May-18 Page: 1 of 1

Item	Description	Unit	Quantity	Rate	\$	\$
1	CONTRACTORS QUALITY PLAN (incorporating Site Safety Plan, Environmental Management Plan and Sediment Control & Site Management Plan)					
1.1	Preparation of CQP incl SSP, EMP & SCP	LS	1	10000	\$10,000.00	
1.2	Management of CQP incl SSP, EMP & SCP	LS	1	30000	\$30,000.00	\$40,000.00
2	TRAFFIC MANAGEMENT PLAN					
2.1	Preparation of Temporary Traffic Management Plan	LS	1	3000	\$3,000.00	
2.2	Management of TTMP/Traffic Control	LS	1	45000	\$45,000.00	\$48,000.00
3	ESTABLISHMENT	LS	1	20000	\$20,000.00	\$20,000.00
4	DAYWORKS					
4.1	Labour	hr	80	50	\$4,000.00	
4.2	Plant	%	10000	1.1	\$11,000.00	
4.3	Materials	%	8000	1.1	\$8,800.00	\$23,800.00
5	LOCATION & PROTECTION OF SERVICES					
5.1	Relocation of existing power pole by Utility Authority	LS	1	10000	\$10,000.00	
5.2	Location of Services & Liaison with Utility Authorities	LS	1	10000	\$10,000.00	
5.3	Relocation & Protection of Services	PS	2	30000	\$60,000.00	\$80,000.00
6	EARTHWORKS					
6.1	Clearing of Site	LS	1	20000	\$20,000.00	
6.2	Topsoil Stripping - 200mm deep (to waste)	m ³	2000	50	\$100,000.00	
6.3	Cut & Undercut to Waste	m ³	2700	50	\$135,000.00	
6.4	Sawcut Existing Kerb & Seal	m	30	15	\$450.00	
6.5	Granular Bulk Fill	m ³	2900	50	\$145,000.00	\$400,450.00
7	DRAINAGE					
7.1	Supply and Install 750mm Dia. PVC-U SN8 Pipe (Incl. bedding & pipe connection) (Pipe size to be confirmed by Design)	m	160	800	\$128,000.00	
7.2	Supply and Install 600mm Dia. PVC-U SN8 Pipe (Incl. bedding & pipe connection) (Pipe size to be confirmed by Design)	m	0	650	\$0.00	
7.3	Supply and Install 225mm Dia. PVC-U SN8 Pipe (Incl. bedding & pipe connection)	m	0	300	\$0.00	
7.4	Supply and Install 1.05m Dia.SWMH Chamber 1.5m deep with HD Lid (Incl. bedding & pipe connection)	ea	4	10000	\$40,000.00	
7.5	Supply and Install 1.5m Dia.SWMH Chamber 2.0m deep with HD Lid (Incl. bedding & pipe connection)	ea	4	13000	\$52,000.00	

PF-T-402 : 12/09

Item	Description	Unit	Quantity	Rate	\$	\$
7.4	Supply and Install Double Back Entry Sump (Incl. bedding & pipe	00	2	7000	¢14,000,00	
7.6	connection) Supply and Install Single Back Entry Sump (Incl. bedding & pipe	ea	2	7000	\$14,000.00	
7.7	connection)	ea	8	3500	\$28,000.00	
	Supply and Install NZTA F2 110mm dia Subsoil drainage pipe (Incl.bedding, Filter material, pipe connection, Geotextile filter wrap &					
7.8	cleaning eye)	m	600	60	\$36,000.00	
7.9	Arrow Irrgation Pipe Bypass Works	LS	0	40000	\$0.00	
7.10	Remove Existing SW Sump and Manhole ConnectionPipe	ea	0	1000	\$0.00	
7.11	Site Stormwater Diversion Works	PS	1	20000	\$20,000.00	
7.12	Remove Existing Concrete Kerb & Channel	m	0	50	\$0.00	\$318,000.00
8	CONCRETE WORKS					
8.1	500mm Wide Kerb & Channel	m	460	120	\$55,200.00	
8.2	Construct 300mm Wide Semi-Mountable kerb	m	400	100	\$40,000.00	
8.3	Form Pedestrian Kerb	m	18	100	\$1,800.00	
8.4	100mm Concrete Island Infill with embedded stones	m ²	705	150	\$105,750.00	\$202,750.00
9	PAVEMENT CONSTRUCTION (CBR4)	3				
9.1	300mm Sub-base AP65 (solid measure)	m ³	4160	160	\$665,600.00	
9.2	180mm Basecourse AP40 (solid measure)	m ³	2500	190	\$475,000.00	
9.3	Running Course (looase measure)	m ³	60	350	\$21,000.00	\$1,161,600.00
10	SURFACING					
10.1	Nominal 50mm AC14 Asphaltic Concrete	m ²	4000	50	\$200,000.00	
10.2	Nominal 100mm AC20 Asphaltic Concrete	m ²	4000	120	\$480,000.00	
10.3	Membrane Seal	m ²	4000	8	\$32,000.00	
10.4	Chipseal surfacing (2 Coat 3/5)	m ²	8450	10	\$84,500.00	\$796,500.00
11	FOOTPATH CONSTRUCTION - (NOT SHOWN ON CONCEPT PLAN)					
11.1	Timber Batten Edging incl Pegs	m	650	20	\$13,000.00	
11.2	100mm AP40 Basecourse (solid measure)	m ³	51	170	\$8,670.00	
11.3	Nominal 25mm Mix 10 Asphaltic Concrete	m^2	510	35	\$17,850.00	
11.4	Cycle Coloured Surface (AS2700 G13 Emerald Green or Similar)	m^2	0	120	\$0.00	
11.5	Fun Yellow Tactile Audio Pavers	m^2	13.2	500	\$6,600.00	
11.6	Resting Rails	ea	12	1200	\$14,400.00	\$60,520.00
12	ROAD LIGHTING Polaceto Evicting Lighting Column (Incl. Eitting luminares and newer					
12.1	Relocate Existing Lighting Column (Incl. Fitting luminares and power disconnection)	ea	1	2000	\$2,000.00	
12.2	Supply & Install New 12m High Lighting Column with 3m Outreach Arm (Incl. 152W LED luminaires)	ea	3	4500	\$13,500.00	
12.3	Supply & Install New 8m High Lighting Column with Post Top Luminaire Mounting Spigot (Incl. 102W LED luminaires) (Baed on 45m spacing)	ea	12	3500	\$42,000.00	
12.4	Power Cable Installation (Incl. Trenching and ducting if required)	LS	1	40000	\$40,000.00	
12.5	Commisioning of Lighting Columns	LS	1	3000	\$3,000.00	\$100,500.00
13	PAVEMENT MARKINGS					
13.1	Reflectorised Pavement marking	LS	1	7000	\$7,000.00	

Item	Description	Unit	Quantity	Rate	\$	\$
13.20	Redundant Pavement Marking Removal (Sand Blasting)	LS	1	2000	\$2,000.00	\$9,000.00
14	TRAFFIC SERVICES					
14.1	Install RG-19.1 Give Way Sign Supplemetary	ea	6	750	\$4,500.00	
14.2	Install RG-6R Rotary Give Way Sign	ea	6	750	\$4,500.00	
14.3	Install RG-17 Keep Left (inc. Duroflex PS 03 mounting)	ea	3	350	\$1,050.00	
14.4	Install RG-1 50m Speed Limit Sign	ea	3	1200	\$3,600.00	
14.5	Install PW-69 Chevron Board	ea	5	1200	\$6,000.00	
14.6	Relocate PW-29 Pedestrians Sign & TW-4B Slippery	ea	2	500	\$1,000.00	
14.7	Install AD-5 Sign	ea	3	5000	\$15,000.00	
14.8	Install PW-5 Diverge Signs	ea	3	500	\$1,500.00	
14.9	Relocate SN-1 Street Sign, Memorial and Track Signs	ea	4	250	\$1,000.00	\$38,150.00
15	LANDSCAPING					
15.1	Existing Tree Removal	LS	1	20000	\$20,000.00	
15.2	Imported Topsoil 100mm Min. depth (solid measure)	m ³	300	100	\$30,000.00	
15.3	Grassing and Hydroseeding (Grass for road berm areas only)	m ²	2975	2.8	\$8,330.00	
15.4	Realignment of existing Timber Post and 7 Wire fence	m	285	100	\$28,500.00	\$86,830.00
16	GUARDRAIL					
16.1	Adjustments to Timber Post Guardrail	PS	1	100000	\$100,000.00	\$100,000.00
17	AS-BUILT DATA & RAMM					
17.1	Road construction RAMM information	LS	1	4000	\$4,000.00	
17.2	As Built drawings	LS	1	6000	\$6,000.00	\$10,000.00
	TOTAL					\$3,496,100.00
	Main Uncertainies					
Α	Pavement Design (To be confirmed after testing)					
В	Guardrail Design - Existing to be amended					
С	Lighting Design					
D	Services (To be confirmed after pot-holing)					

www.wsp-opus.co.nz